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Abstract

We provide an example of random-effects meta-analysis and meta-
regression where the maximum likelihood estimate of the between-study
variance is zero and where more reasonable estimates are obtained us-
ing Bayes modal estimation. See Chung, Rabe-Hesketh, Dorie, et al.
(2013); Chung, Rabe-Hesketh, & Choi (2013) for the theory and further
examples. Please also cite the above papers, not the current document.

Introduction

According to Raudenbush and Bryk (2002, p.210-211), “the hypothesis that teachers’ expec-
tations influence pupils’ intellectual development as measured by IQ (intelligence quotient)
scores has been the source of sustained and acrimonious controversy for over 20 years.”

Raudenbush (1984) and Raudenbush and Bryk (1985) discuss meta-analysis of 19 experi-
ments testing this hypothesis. In each study, children were assigned either to an experimental
group or a control group. Teachers were encouraged to have high expectations of the chil-
dren in the experimental group, whereas no particular expectations were encouraged of the
children in the control group. The data are listed in Table 1 of Raudenbush and Bryk (1985).

It is also hypothesized that the amount of teacher-pupil contact prior to the experiment
influences the size of the expectancy effect. Following Raudenbush and Bryk (1985), we
will therefore also consider a meta-regression with number of weeks of prior contact as
explanatory variable. The model can be written as

yi = µ+ βxi + θi + ǫi,
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Figure 1. : Profile log-likelihood function

where xi is the mean-centered number of weeks of prior contact, θi ∼ N(0, τ 2), and ǫi ∼
N(0, s2i ). The standard random-effects meta-analysis model corresponds to the model above
with β = 0.

Maximum likelihood and restricted maximum likelihood estimates

The model with and without the covariate was estimated by maximum likelihood (ML)
and restricted (or residualized) maximum likelihood (REML, Patterson & Thompson, 1971)
using the metaan (Kontopantelis & Reeves, 2010) and metareg (Harbord & Higgins, 2008)
commands in Stata. In the meta-analysis model without covariates, the ML estimate of µ is
0.078 with standard error 0.052 (see Table 1). The REML estimate is 0.084 with standard
error 0.052. Both ML and REML estimates of the overall effect µ are not significant, but
the between-study standard deviation τ is estimated as 0.112 and 0.137 by ML and REML,
respectively. This suggests that there is important variability between studies.

When we include the covariate, the ML estimates µ̂ and β̂ are both significant at the 5%
level with estimates 0.134 and -0.157 and standard errors 0.040 and 0.036, respectively (also
shown in Table 1). However, the residual between-study standard deviation is estimated as
zero. This point estimate is unrealistic because it implies that the study-specific effect is
perfectly predicted by the covariate.

Figure 1 shows the profile log-likelihood for τ for the meta-regression model (maximized
with respect to µ and β.) Clearly the maximum of the profile log-likelihood is attained at
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τ = 0 but for slightly larger values of τ , e.g. τ = 0.05 (=standard error of ML estimate τ̂ ),
the profile log-likelihood does not decrease substantially. Comparing the change in profile
log-likelihood with χ2

0.95(1)/2 = 1.921, we can infer that values for τ up to about 0.1 are
reasonably supported by the data.

Bayes modal estimates

In this section we obtain Bayes modal estimates with a gamma(2, 10−4) prior on τ using
the Stata program gllamm (Rabe-Hesketh et al., 2005; Rabe-Hesketh & Skrondal, 2012); see
Chung, Rabe-Hesketh, Dorie, et al. (2013) and Chung, Rabe-Hesketh, & Choi (2013) for full
discussions of this approach. For the meta-analysis model (without covariates), estimates of µ
and τ are also obtained using DL (DerSimonian and Laird) using metaan UMM (unweighted
method of moments) using our own program (see Chung, Rabe-Hesketh, & Choi (2013) for
details of these approaches).

For the meta-regression model, the BM estimate of τ is 0.054 while the ML and REML
estimates are both zero. As expected, the BM estimate of τ is about one standard error
(0.050) away from ML estimate of 0 and the log-likelihood decreases only 0.540 from the
maximum value of 6.168, which shows that the BM estimate τ̂BM = 0.054 is still reasonably
supported by the data. As expected, the estimated standard errors of µ̂ and β̂ are larger for
BM than for ML and REML.

Table 1:: Parameter estimates in meta-analysis model and in meta-regression model with
teachers’ expectancy data.

Coefficient estimates

µ̂ (se(µ̂)) β̂ (se(β̂)) τ̂ Log-likelihood
Meta-analysis model

ML 0.078 (0.052) · 0.112 -3.120
REML 0.084 (0.052) · 0.137 -3.161
BM 0.089 (0.058) · 0.160 -3.269
DL 0.089 (0.056) · 0.161 -3.278
UMM 0.114 (0.079) · 0.284 -4.856

Meta-regression model
ML, REML 0.134 (0.040) -0.157 (0.036) 0 (0.050∗) 6.168
BM 0.135 (0.043) -0.159 (0.038) 0.054 (0.041∗) 5.628

∗: Standard error of τ̂ based on the observed information.

Different types of confidence intervals

We now compare and visualize the different types of confidence intervals of µ that are
discussed in Section 3.3 of Chung, Rabe-Hesketh, & Choi (2013). To do this, we consider the
likelihood surface for the meta-analysis model without covariates shown as a contour plot
in Figure 2. The “X” marks the maximum likelihood estimates (µ̂ML, τ̂ML) = (0.078, 0.112).
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Figure 2. : Contour plot of the log-likelihood function for the meta-analysis without covari-
ates applied to the teachers’ expectancy dataset.

The dashed curve shows the values of τ that maximizes the log-likelihood for given values
of µ. The log-likelihood along this path, as a function of µ, is the profile log-likelihood
function lp(µ). The dash-dotted line indicates where the conditional log-likelihood given the
ML estimate of τ is located. The contours show decreases from the maximum (-3.12) in
multiples of χ2

0.95(1)/2 = 1.92.

Figure 3 illustrates four different methods for constructing confidence intervals for µ. The
top panel shows the conditional log-likelihood given τ = τ̂ML, which is a two-dimensional
view of Figure 2 along the dash-dotted line. Note that, for any given τ , µ̂ML is a linear
combination of the yi and so it is exactly normally distributed. Therefore, the conditional
log-likelihood function of µ given τ is always quadratic in µ, as observed in the top panel
of Figure 3. The vertical solid line is at µ̂ML = 0.078 and the two dashed lines indicate the
lower (-0.024) and upper bounds (0.179) of the 95% Wald-type CI of µ based on the expected
information at (µ̂ML, τ̂ML). The horizontal solid line is 1.92 (= χ2

0.95(1)/2) lower than the
maximum so that it crosses at the bounds of the confidence interval.

The plot in the middle panel of Figure 3 shows the profile log-likelihood lp(µ). Again the
solid horizontal line is 1.92 lower than the maximum of the profile log-likelihood function.
Therefore, the limits of the 95% profile likelihood CI (−0.016, 0.205) are where the profile log-
likelihood curve and the horizontal line cross. Since the profile log-likelihood is slightly right-
skewed, the confidence interval is not centered at µ̂ML. The dash-dot curve is a quadratic
approximation of the profile-likelihood function at the mode. The curvature of this curve at
the mode can be calculated from the observed information at (µ̂ML, τ̂ML). The limits of the
95% Wald-type CI (−0.024, 0.179) based on the observed information are shown as vertical
dash-dot lines, which coincide with the points where the quadratic curve and the horizontal
line cross each other. Although this Wald-type CI based on the observed information is not
as wide as the profile likelihood CI, it is wider than the Wald-type CI based on the expected
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Figure 3. : Comparison of the Wald-type CI based on the expected information with ML
estimates (top), profile likelihood CI and the Wald-type CI based on the observed information
with ML estimates (middle), and a Wald-type CI with BM estimate (bottom).

information since it takes into account the uncertainty of τ̂ .

The bottom panel shows the log-posterior at τ = τ̂BM with a gamma(2, 10−4) prior on τ .
The limits of the 95% Wald-type CI (−0.026, 0.204) based on the “observed information”
(the Hessian of the log-posterior function) are shown as dashed vertical lines. This confidence
interval is close to the profile likelihood CI but is the widest among all the intervals considered
here.
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