Sophia Rabe-Hesketh

University of California, Berkeley
Institute of Education, London
and

Anders Skrondal

Norwegian Institute of Public Health, Oslo

Institute of Education
Bloomsbury Doctoral Training Center for the Social Sciences June 2012

(1.) Random intercept models

- Clustered data, unobserved heterogeneity and dependence
- Random intercept models
- Intraclass correlation
- Example: GHQ test-retest data
- Estimation, testing and confidence intervals
- Empirical Bayes prediction and shrinkage
- Fixed versus random effects
(1.) Random intercept models (slide 3)
(II.) Random coefficient models (slide 31)
(III.) Multilevel logistic regression (slide 65)Longitudinal data and alternatives to multilevel modelling (slide 95)

Clustered data

- An important assumption in linear regression and logistic regression is that units (usually people) are independent (given covariates x)
- An important violation is due to clustered data with responses $y_{i j}$ on units i grouped in clusters j :
- Students i clustered in schools j
- Siblings i clustered in families j
- Repeated observations i clustered in people j (longitudinal, repeated measures, or panel data)

- General terms: level-1 units i clustered in level-2 units j

Unobserved heterogeneity

- Could not hope to explain all variability between clusters (e.g. schools) using observed covariates x
- For instance, the school atmosphere, parents' involvement, teachers' enthusiasm and competence, etc., cannot all be measured
- Therefore there is unobserved heterogeneity (= unexplained variability) between clusters
- Means that two observations in same cluster are correlated and more similar than observations in different clusters
- Students in one school tend to have better test results, even after controlling for covariates, than students in another school

Variance-components model

- Model between-cluster heterogeneity:

$$
y_{i j}=\beta+\underbrace{\zeta_{j}+\epsilon_{i j}}_{\xi_{i j}}
$$

- Total residual $\xi_{i j}$ split into level-2 residual ζ_{j} (shared by all members of cluster) and level-1 residual (unit-specific) $\epsilon_{i j}$
- ζ_{j}, random intercept for cluster j
\diamond deviation of true cluster-mean $\beta+\zeta_{j}$ from overall mean β
\diamond independent of $\zeta_{j^{\prime}}$ for other clusters j^{\prime}
\diamond mean zero and variance ψ (a model parameter)
- $\epsilon_{i j}$, the level-1 residual
\diamond deviation of $y_{i j}$ from its true cluster mean $\beta+\zeta_{j}$
\diamond independent of $\epsilon_{i^{\prime} j^{\prime}}$ for other i^{\prime} or j^{\prime} and of ζ_{j} and $\zeta_{j^{\prime}}$
\diamond mean zero and variance θ (a model parameter)

Heterogeneity and dependence

- Example: No covariates, two units $i=1,2$ per cluster j with responses $y_{i j}$:

$$
y_{i j}=\beta+\xi_{i j}, \quad \xi_{i j} \text { is a residual }
$$

- is $y_{1 j}$
- is $y_{2 j}$
- is the mean $\frac{1}{2}\left(y_{1 j}+y_{2 j}\right)$
- Residuals $\xi_{i j}$ for same cluster usually have same sign, corresponding to within-cluster correlations or dependence
(c)Rabe-Hesketh\&Skrondal - p. 6

Illustration of variance components model

β population mean

Variance components

Conditional independence

- Total residual or error:

$$
\xi_{i j}=\zeta_{j}+\epsilon_{i j}
$$

- Can view ζ_{j} and $\epsilon_{i j}$ as error components
- Total residual variance:

$$
\operatorname{var}\left(\xi_{i j}\right)=\operatorname{var}\left(\zeta_{j}\right)+\operatorname{var}\left(\epsilon_{i j}\right)=\overbrace{\psi}^{\text {between }}+\overbrace{\theta}^{\text {within }}
$$

- Variances add up because ζ_{j} and $\epsilon_{i j}$ are independent
- ψ and θ are therefore variance components
- Total variance of $y_{i j}$:

$$
\operatorname{var}\left(y_{i j}\right)=\operatorname{var}\left(\beta+\xi_{i j}\right)=\operatorname{var}\left(\xi_{i j}\right)=\psi+\theta
$$

- Responses conditionally independent given random intercept
- Zero covariance and correlation between measurements on two units i and i^{\prime}, given the random intercept ζ_{j},

$$
\operatorname{Cor}\left(y_{i j}, y_{i^{\prime} j} \mid \zeta_{j}\right)=0
$$

Distributional assumptions

- Assume that $\zeta_{j} \sim \mathrm{~N}(0, \psi)$
- Assume that $\epsilon_{i j} \sim \mathrm{~N}(0, \theta)$
- Hierarchical, two-stage model, reflecting two-stage sampling:
- $\zeta_{j} \sim \mathrm{~N}(0, \psi) \Longrightarrow$ determines $\beta+\zeta_{j}$
- $\epsilon_{i j} \sim \mathbf{N}(0, \theta) \Longrightarrow$ determines $y_{i j}=\beta+\zeta_{j}+\epsilon_{i j}$

- Maximum likelihood estimation (ML)
- If variances were known, would use GLS (generalised least squares) \Rightarrow IGLS (Iterative GLS), iterating between estimation of fixed and random part
- EM (Expectation-Maximization) algorithm: Treat random effects as missing values
- Restricted maximum likelihood estimation (REML)
- ML gives downward biased estimate of random intercept variance
- If cluster size is constant, $n_{j}=n$, REML gives unbiased estimates (if estimates allowed to be negative)
- REML is ML applied to 'residuals'
- Software: MLwiN, HLM, SPSS: MIXED, Stata: xtmixed, SAS: MIXED, R: lmer (all give identical estimates)

Example: GHQ test-retest data

- General Health Questionnaire (GHQ) to measure psychological distress
- Sum of 12 items, each scored 0,1, or 2
- Completed twice by 12 clinical psychology students, 3 days apart
- Variables:
- Subject id j
- Occasion (1:test, 2:retest) i
- GHQ score $y_{i j}$
- Inference for β
- Wald test: Use estimated standard error $\widehat{\mathrm{SE}}(\widehat{\beta})$ for test statistic (and confidence interval)

$$
H_{0}: \beta=\mu_{0}, \quad z=\frac{\widehat{\beta}-\mu_{0}}{\widehat{\mathrm{SE}}(\widehat{\beta})}
$$

- Test for zero between-cluster variance $H_{0}: \psi=0$
- Likelihood ratio test (DO NOT USE WALD TEST)
\diamond Compare log-likelihood L_{1} for random-intercept model with log-likelihood L_{0} for ordinary regression model (no ζ_{j})
\diamond Test statistic $G^{2}=2\left(L_{1}-L_{0}\right)$
\diamond Asymptotic sampling distribution under H_{0} not $\chi^{2}(1)$ because null hypothesis is on boundary of parameter space since $\psi \geq 0$
\diamond Solution: assume $\chi^{2}(1)$ distribution, but divide p-value by 2
(c)Rabe-Hesketh\&Skrondal - p. 14

Graph for GHQ data

Maximum likelihood estimates for GHQ data

	Est	(SE)
Fixed part		
β	10.17	(1.68)
Random part		
$\sqrt{\psi}$	5.65	
$\sqrt{\theta}$	1.91	
Log-likelihood	-67.13	

Exercises: GHQ data

- Calculate the estimated intraclass correlation
- Consider the Pearson correlation between test and retest. Is this different than the intraclass correlation? If so, why?

Assigning values to random effects:
 Empirical Bayes prediction

- ζ_{j} is a residual like $\epsilon_{i j}$
- ζ_{j} is a random variable, not a model parameter
- As in ordinary regression, sometimes want to predict residuals
- Reasons for predicting ζ_{j} :
- Residual diagnostics
- Inference for cluster-mean $\beta+\zeta_{j}$ or ζ_{j}
\diamond Measurement (e.g., GHQ): $\beta+\zeta_{j}$ is "true score"
\diamond Institutional performance: ζ_{j} is "value added"
- Model interpretation

Assigning values to random effects:

Empirical Bayes prediction

- Treat parameter estimates $\widehat{\beta}, \widehat{\psi}$ and $\widehat{\theta}$, as known parameter values
- For cluster j, empirical Bayes combines

1. Prior distribution of ζ_{j}, knowledge about ζ_{j} before seeing data for the cluster

$$
\operatorname{Prior}\left(\zeta_{j}\right) \quad[\text { normal density } g(0, \widehat{\psi})]
$$

2. Likelihood, knowledge about ζ_{j} provided by the data $\mathbf{y}_{j}\left(\right.$ and $\left.\mathbf{X}_{j}\right)$

$$
\text { Likelihood }\left(\mathbf{y}_{j} \mid \zeta_{j}\right) \quad\left[\prod_{i=1}^{n_{j}} g\left(\widehat{\beta}+\zeta_{j}, \widehat{\theta}\right)\right]
$$

- To obtain posterior distribution of random intercept (Bayes Theorem)

$$
\operatorname{Posterior}\left(\zeta_{j} \mid \mathbf{y}_{j}\right) \propto \operatorname{Prior}\left(\zeta_{j}\right) \times \operatorname{Likelihood}\left(\mathbf{y}_{j} \mid \zeta_{j}\right)
$$

Empirical Bayes prediction (cont'd)

- Empirical Bayes prediction $\widetilde{\zeta}_{j}=1.33$ is mean of posterior distribution

Fixed effects approach for GHQ data (cont'd)

	FE	EST	(SE)	RE	EB	(SE)
Fixed part	α_{1}	12	(1.35)	$\beta+\zeta_{1}$	11.9	(1.32)
	α_{2}	7.5	(1.35)	$\beta+\zeta_{2}$	7.6	(1.32)
	α_{3}	23.0	(1.35)	$\beta+\zeta_{3}$	22.3	(1.32)
	α_{4}	12.0	(1.35)	$\beta+\zeta_{4}$	11.9	(1.32)
	α_{5}	9.0	(1.35)	$\beta+\zeta_{5}$	9.1	(1.32)
	α_{6}	5.0	(1.35)	$\beta+\zeta_{6}$	5.3	(1.32)
	α_{7}	6.5	(1.35)	$\beta+\zeta_{7}$	6.7	(1.32)
	α_{8}	5.0	(1.35)	$\beta+\zeta_{8}$	5.3	(1.32)
	α_{9}	14.0	(1.35)	$\beta+\zeta_{9}$	13.8	(1.32)
	α_{10}	5.5	(1.35)	$\beta+\zeta_{10}$	5.8	(1.32)
	α_{11}	3.5	(1.35)	$\beta+\zeta_{11}$	3.9	(1.32)
	α_{12}	19.0	(1.35)	$\beta+\zeta_{12}$	18.5	(1.32)
Random part	θ	3.7				

- 13 parameters (θ and $12 \alpha_{j}$) for fixed-effects model, compared with 3 parameters (θ, β, ψ) for random-effects model
- In random-effects model, use empirical Bayes to assign values to cluster means $\beta+\zeta_{j}$

Fixed instead of random effects of clusters

- Can view clusters as categories of categorical explanatory variable
- Fixed effects of cluster: dummy variable $d_{m j}$ for cluster j
(no intercept) α_{j}

$$
y_{i j}=\overbrace{\sum_{m=1}^{J} \alpha_{m} d_{m j}}+\epsilon_{i j}, \quad d_{m j}=\left\{\begin{array}{ll}
1 & \text { if } m=j \\
0 & \text { if } m \neq j
\end{array} \quad \epsilon_{i j} \sim \mathbf{N}(0, \theta)\right.
$$

- α_{j} are fixed parameters, representing clusters' population means
- $\epsilon_{i j}$ is a random error term, representing within-cluster variability
- Random effects of cluster:

$$
y_{i j}=\beta+\zeta_{j}+\epsilon_{i j}, \quad \zeta_{j} \sim \mathrm{~N}(0, \psi), \quad \epsilon_{i j} \sim \mathrm{~N}(0, \theta)
$$

- β is a fixed parameter, the population mean
- ζ_{j} and $\epsilon_{i j}$ are random error terms

Maximum likelihood estimation of cluster-specific effects

- Estimated coefficients $\widehat{\alpha}_{j}$ of dummies are ML estimates of $\beta+\zeta_{j}$
- Maximum likelihood estimates of ζ_{j}, maximum of Likelihood $\left(\mathbf{y}_{j} \mid \zeta_{j}\right)$ with $\widehat{\beta}$ treated as known
- Also called OLS (Ordinary Least Squares) estimates
- Simply the cluster means of the estimated total residuals $\widehat{\xi}_{i j}$

$$
\begin{gathered}
\widehat{\xi}_{i j}=y_{i j}-\widehat{\beta}=\widehat{\zeta_{j}+\epsilon_{i j}} \\
\widehat{\zeta}_{j}^{\mathrm{ML}}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} \widehat{\xi}_{i j}
\end{gathered}
$$

Shrinkage

Illustration: Shrinkage

- Empirical Bayes prediction of random intercept can be written as

$$
\widetilde{\zeta}_{j}^{\mathrm{EB}}=\widehat{R}_{j} \widehat{\zeta}_{j}^{\mathrm{ML}}, \quad \widehat{R}_{j}=\frac{\widehat{\psi}}{\widehat{\psi}+\widehat{\theta} / n_{j}}
$$

- \widehat{R}_{j} is estimated 'reliability' of ML estimator (true score variance divided by total variance of $\widehat{\zeta}_{j}^{\mathrm{ML}}$)
- \widehat{R}_{j} is shrinkage factor, shrinking prediction towards 0 (mean of prior) since $0 \leq \widehat{R}_{j} \leq 1$
- More shrinkage (i.e. greater influence of prior) if
\diamond Small random intercept variance $\widehat{\psi}$ (informative prior)
\diamond Large level-1 residual variance $\widehat{\theta}$ (non-informative data)
\diamond Small cluster size n_{j} (non-informative data)
- Cluster with $n_{j}=2$ units
- Predicted total residuals $\widehat{\xi}_{1 j}=3$ and $\widehat{\xi}_{2 j}=5$

"Borrowing strength" or partial pooling

- EB for cluster j 'borrows strength' from other clusters
- Estimate of true cluster mean $\beta+\zeta_{j}$ is:
- ML:

$$
\widehat{\beta}+\widehat{\zeta}_{j}^{\mathrm{ML}}=\widehat{\beta}+\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}\left(y_{i j}-\widehat{\beta}\right)=\widehat{\beta}+\left(\bar{y}_{\cdot j}-\widehat{\beta}\right)=\bar{y} \cdot j
$$

\Longrightarrow sample mean of cluster j

- EB:

$$
\widehat{\beta}+\widetilde{\zeta}_{j}^{\mathrm{EB}}=\widehat{\beta}+\widehat{R}_{j} \widehat{\zeta}_{j}^{\mathrm{ML}}=\widehat{\beta}+\widehat{R}_{j}\left(\bar{y}_{\cdot j}-\widehat{\beta}\right)=\left(1-\widehat{R}_{j}\right) \widehat{\beta}+\widehat{R}_{j} \bar{y}_{\cdot j}
$$

\Longrightarrow weighted mean of:
sample mean of cluster j and $\widehat{\beta}$, estimate based on all clusters

Fixed versus random effects

Issue	Fixed effects	Random effects
Inference for population of clusters	No	Yes +
Number of clusters required	Any number +	At least 10 or 20
Assumptions	None for distribution of intercepts	Intercepts normal, constant variance, etc.
Inference for individual clusters	Yes +	Yes, empirical Bayes
Cluster sizes required	Any sizes if many ≥ 2, but overfitting if small \pm	Any sizes if many $\geq 2 \quad+$
Parsimony	A parameter α_{j} for each cluster	One variance parameter ψ for all clusters

- Note: Further issues if there are covariates and for generalized linear mixed models

(11.) Random coefficient models

- Random intercept model with covariates
- Example: Georgian birthweights
- Between effects, within effects and endogeneity
- Random coefficients

Exercise: Fixed versus random

- In each situation below, should fixed or random effects be used?

1. Math achievement, 3 schools, 30 to 40 students per school
2. Reading test, 43 countries, about 2000 students per country
3. Longitudinal data on 20 subjects, 3 observations per subject
4. Blood pressure, 10 treatment groups, 20 patients per group
5. Depression, 15 therapists, 3-15 patients per therapist

Random intercept model with covariate

- Add covariate to variance components model:

$$
y_{i j}=\underbrace{\beta_{1}+\beta_{2} x_{i j}}_{\text {fixed part }}+\underbrace{\zeta_{j}+\epsilon_{i j}}_{\text {random part }}
$$

- Intercept varies between clusters:

$$
y_{i j}=\underbrace{\beta_{1}+\zeta_{j}}_{\substack{\text { intereept } \\ \text { for cluster } j}}+\beta_{2} x_{i j}+\epsilon_{i j}
$$

Assumptions for

random intercept model with covariate

- Assumptions for $\epsilon_{i j}$ and ζ_{j} :
- $E\left(\epsilon_{i j} \mid \zeta_{j}, \mathbf{X}_{j}\right)=0$
$\diamond \Rightarrow \operatorname{Cov}\left(\epsilon_{i j}, \mathbf{X}_{j}\right)=0$ [level-1 exogeneity]
$\diamond \Rightarrow$ variance decomposition
- $\epsilon_{i j}$ independent over units i and clusters j \Rightarrow conditional independence of responses given random intercept
- $E\left(\zeta_{j} \mid \mathbf{X}_{j}\right)=0$ $\Rightarrow \operatorname{Cov}\left(\zeta_{j}, \mathbf{X}_{j}\right)=0$ [level-2 exogeneity]
- ζ_{j} independent for different j
\Rightarrow independent clusters in likelihood
- Distributional assumptions (for maximum likelihood):
- $\epsilon_{i j}$ normal with zero mean and variance θ
- ζ_{j} normal with zero mean and variance ψ

Illustration of random intercept model with covariate

Regression lines

- Population averaged or marginal regression line (mean over population of clusters and populations of units within clusters)

$$
\mathbf{E}\left(y_{i j} \mid x_{i j}\right)=\beta_{1}+\beta_{2} x_{i j}
$$

- Cluster-specific or conditional regression line (mean over population of units within cluster j)

$$
\begin{aligned}
\mathrm{E}\left(y_{i j} \mid x_{i j}, \zeta_{j}\right) & =\beta_{1}+\beta_{2} x_{i j}+\zeta_{j} \\
& =\left(\beta_{1}+\zeta_{j}\right)+\beta_{2} x_{i j}
\end{aligned}
$$

- ψ is variance between cluster-specific intercepts $\beta_{1}+\zeta_{j}$
- θ is variance of $y_{i j}$ around cluster-specific regression lines
© Rabe-Hesketh\&Skrondal - p. 34

Example: Georgia birthweights

- 878 mothers of five children in Georgia, USA:
- Child's birth weight in grams $y_{i j}$
- Mother's age at the time of the child's birth $x_{i j}$
- Random intercept model:

$$
y_{i j}=\beta_{1}+\beta_{2} x_{i j}+\zeta_{j}+\epsilon_{i j}
$$

- With the usual assumptions stated on slide 33

Estimates for Georgia birthweights (cont'd)

	with age			without age	
	Est	(SE)		Est \quad (SE)	
Fixed part					
β_{1}	2785.2	(45.2)		3156.3	(14.1)
β_{2} [age]	17.1	(2.0)			
Random part					
$\sqrt{\psi}$	354.6		368.4		
$\sqrt{\theta}$	434.2		435.5		
Log-likelihood	-33535.7		-33572.3		

Between and within-cluster covariates

- Covariates may vary
- Between clusters, e.g., mother's own birthweight
- Within clusters, e.g., children's parity (birth order) 1,2,3,4,5
- Both between and within clusters, e.g., mother's age at birth
\diamond Between-cluster variability: Standard deviation of cluster mean age around overall mean is 3.7
\diamond Within-cluster variability: Standard deviation of age around cluster means is 2.8
\diamond Overall variability: Conventional standard deviation (ignoring clustering) is 4.6

Between and within-cluster effects of covariates

- Previous model:

$$
y_{i j}=\beta_{1}+\beta_{2} x_{i j}+\zeta_{j}+\epsilon_{i j}
$$

- Coefficient β_{2} represents difference in mean birth weight for children whose mothers differ in age by one year
- Two types of comparisons or effects:
- Within-mother effect:

Same mother, children born at different times (ages)

- Between-mother effect:

Different mothers giving birth at different ages

- Model assumes that both effects are the same

Between and within cluster effects

- Between effect: Take cluster average of random intercept model

$$
\begin{aligned}
\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} y_{i j} & =\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}\left[\beta_{1}+\beta_{2} x_{i j}+\zeta_{j}+\epsilon_{i j}\right] \\
\bar{y}_{\cdot j} & =\beta_{1}+\beta_{2} \bar{x}_{\cdot j}+\underbrace{\zeta_{j}+\bar{\epsilon}_{\cdot j}}_{e_{j}}
\end{aligned}
$$

- Within effect: Subtract cluster average random intercept model from random intercept model

$$
\begin{aligned}
y_{i j} & =\left[\beta_{1}+\beta_{2} x_{i j}+\zeta_{j}+\epsilon_{i j}\right] \\
-\bar{y}_{\cdot j} & =-\left[\beta_{1}+\beta_{2} \bar{x}_{\cdot j}+\zeta_{j}+\bar{\epsilon}_{\cdot j}\right] \\
y_{i j}-\bar{y}_{\cdot j} & =\underbrace{\beta_{2}}_{\rho_{2}\left(x_{i j}-\bar{x}_{\cdot j}\right)+\underbrace{}_{i j}-\bar{\epsilon}_{\cdot j}}
\end{aligned}
$$

x

- Hollow circles: individual units $\left(x_{i j}, y_{i j}\right)$
- Dotted lines: within-cluster regression, slope is within-cluster effect
- Solid circles: cluster means ($\bar{x}_{. j}, \bar{y}_{. j}$)
- Dashed line: between-cluster regression, slope is between-cluster effect
- Simpson's paradox, cluster-level confounding, ecological fallacy

Exercise: Between and within-effects

- Explain why you think there is a difference between the within and between-effects of mother's age on birth weight

Between and within-cluster estimates
for Georgia birthweights

	Between			Within	
	Est	(SE)		Est	(SE)
Fixed part					
β_{1}	2499.1	(80.7)		2900.1	(51.1)
β_{2} [age]	30.4	(3.7)		11.8	(2.3)

- Estimated between-effect much larger than within-effect
- Advantage of clustered data:

Can distinguish between different kinds of effects!

Cluster-level confounding and endogeneity

- Random intercept model (equal between and within-cluster effects)

$$
\begin{aligned}
y_{i j} & =\beta_{1}+\beta_{2} x_{i j}+\zeta_{j}+\epsilon_{i j} \\
& =\beta_{1}+\beta_{2}\left(x_{i j}-\bar{x}_{. j}\right)+\beta_{2} \bar{x}_{. j}+\zeta_{j}+\epsilon_{i j}
\end{aligned}
$$

- Random intercept model assumes exogenous covariate (important if β_{2} interpreted as causal effect of $x_{i j}$ on $y_{i j}$)
- $x_{i j}$ uncorrelated with ζ_{j} (no cluster-level confounding)
$\diamond \bar{x}_{. j}$ uncorrelated with ζ_{j}
\diamond Assumption not made in within-cluster regression

$$
y_{i j}-\bar{y}_{\cdot j}=\beta_{2}\left(x_{i j}-\bar{x}_{\cdot j}\right)+\epsilon_{i j}-\bar{\epsilon}_{\cdot j}
$$

- $x_{i j}$ uncorrelated with $\epsilon_{i j}$ (no unit-level confounding)
$\diamond\left(x_{i j}-\bar{x}_{. j}\right)$ uncorrelated with $\epsilon_{i j}$
- Within-cluster estimate not subject to cluster-level confounding closer to causal effect?

Allowing and testing for endogeneity

- Concern about bias due to correlation between ζ_{j} and $x_{i j}$ (especially among economists who call this endogeneity)
- Use within-effect estimator or modify random intercept model:

$$
y_{i j}=\beta_{1}+\beta_{2 w}\left(x_{i j}-\bar{x}_{\cdot j}\right)+\beta_{2 b} \bar{x}_{\cdot j}+\zeta_{j}+\epsilon_{i j}
$$

$\diamond \beta_{2 w}$ is within-effect and $\beta_{2 b}$ is between-effect

- If $\operatorname{Cor}\left(x_{i j}, \zeta_{j}\right) \neq 0$
$\diamond \widehat{\beta}_{2 b}$ inconsistent since $\operatorname{Cor}\left(\bar{x}_{\cdot j}, \zeta_{j}\right) \neq 0$
$\diamond \widehat{\beta}_{2 w}$ consistent since $\operatorname{Cor}\left(\left(x_{i j}-\bar{x}_{\cdot j}\right), \zeta_{j}\right)=0$ and $\operatorname{Cor}\left(\left(x_{i j}-\bar{x}_{\cdot j}\right), \bar{x}_{\cdot j}\right)=0$
- Test of $H_{0}: \beta_{2 w}=\beta_{2 b}$, highly significant, $p<0.001$
- This test is equivalent to famous Hausman test in econometrics

Fixed instead of random effects of clusters

- Regression with dummy variables $d_{m j}$ for each cluster (and no intercept) - ANCOVA model

$$
y_{i j}=\overbrace{\sum_{m=1}^{J} \alpha_{m} d_{m j}}^{\alpha_{j}}+\beta_{2} x_{i j}+\epsilon_{i j}, \quad d_{m j}= \begin{cases}1 & \text { if } m=j \\ 0 & \text { if } m \neq j\end{cases}
$$

- Any between-cluster covariate z_{j} or $\bar{x}_{. j}$ completely collinear with set of dummy variables, i.e., can be written as linear combination of dummy variables:

$$
z_{j}=\sum_{m=1}^{J} z_{m} d_{m j} \quad x_{\cdot j}=\sum_{m=1}^{J} x_{. m} d_{m j}
$$

\diamond Cannot include between-cluster covariates
\diamond Estimate of β_{2} is within-effect; between-effect absorbed in α_{1} to α_{J}
©Rabe-Hesketh\&Skrondal - p. 46

Fixed versus random effects revisited

Issue	Fixed effects	Random effects
Inference for population of clusters	No	Yes
Number of clusters required	Any number +	At least 10 or 20
Assumptions	None for distribution of intercepts	Intercepts normal, constant variance, etc.
Effects of clusterlevel covariates	No	Yes
Inference for individual clusters	Yes +	Yes, Empirical Bayes
Cluster sizes required	Any sizes if many ≥ 2, but overfitting if small \pm	Any sizes if many $\geq 2 \quad+$
Parsimony	A parameter α_{j} for each cluster	One variance parameter ψ for all clusters
Within-cluster effects of covariates	Yes +	Only with extra work

Random coefficient models

- Not only the overall level of the response (intercept) can vary between clusters, but also the slopes of within-cluster covariates
- Simple example:

$$
\begin{aligned}
y_{i j} & =\overbrace{\beta_{1}+\zeta_{1 j}}^{\text {intercept }}+\overbrace{\left(\beta_{2}+\zeta_{2 j}\right)}^{\text {slope }} x_{i j}+\epsilon_{i j} \\
& =\underbrace{\beta_{1}+\beta_{2} x_{i j}}_{\text {fixed part }}+\underbrace{\zeta_{1 j}+\zeta_{2 j} x_{i j}+\epsilon_{i j}}_{\text {random part }}
\end{aligned}
$$

- $\zeta_{1 j}$ is random intercept: Deviation of cluster-specific intercept from mean intercept
- $\zeta_{2 j}$ is random slope: Deviation of cluster-specific slope from mean slope

Assumptions for random coefficient models

- Exogeneity assumptions analogous to random intercept model
- Distributional assumptions (for maximum likelihood):
- $\epsilon_{i j}$ normal with zero mean and variance θ
- $\left(\zeta_{1 j}, \zeta_{2 j}\right)$ bivariate normal with zero means and unstructured covariance matrix (variances ψ_{11} and ψ_{22} and covariance ψ_{21})

Regression lines

- Population averaged or marginal regression line (mean over population of clusters and populations of units within clusters)

$$
\mathbf{E}\left(y_{i j} \mid x_{i j}\right)=\beta_{1}+\beta_{2} x_{i j}
$$

- Cluster-specific or conditional regression line (mean over population of units within cluster j)

$$
\begin{aligned}
\mathrm{E}\left(y_{i j} \mid x_{i j}, \zeta_{1 j}, \zeta_{2 j}\right) & =\beta_{1}+\beta_{2} x_{i j}+\zeta_{1 j}+\zeta_{2 j} x_{i j} \\
& =\left(\beta_{1}+\zeta_{1 j}\right)+\left(\beta_{2}+\zeta_{2 j}\right) x_{i j}
\end{aligned}
$$

Parameters of random part

- Four unique parameters for random part:
- Unstructured covariance matrix of intercepts $\zeta_{1 j}$ and slopes $\zeta_{2 j}$:

$$
\left[\begin{array}{cc}
\operatorname{Var}\left(\zeta_{1 j}\right) & \operatorname{Cov}\left(\zeta_{1 j}, \zeta_{2 j}\right) \\
\operatorname{Cov}\left(\zeta_{2 j}, \zeta_{1 j}\right) & \operatorname{Var}\left(\zeta_{2 j}\right)
\end{array}\right]=\left[\begin{array}{cc}
\psi_{11} & \psi_{12} \\
\psi_{21} & \psi_{22}
\end{array}\right], \quad \psi_{21}=\psi_{12}
$$

- Variance of level-1 residuals $\epsilon_{i j}: \theta$
- Easier to interpret standard deviations $\sqrt{\psi_{11}}, \sqrt{\psi_{22}}, \sqrt{\theta}$ and correlation ρ_{21}

$$
\rho_{21}=\frac{\psi_{21}}{\sqrt{\psi_{11} \psi_{22}}}
$$

Two-stage formulation

Reduced form model

Raudenbush and Bryk (R\&B) define multilevel model in stages:

- Level-1 model with cluster-specific coefficients and unit-specific covariates:

$$
y_{i j}=\beta_{0 j}+\beta_{1 j} x_{i j}+r_{i j}
$$

- Level-2 models for cluster-specific coefficients with cluster-specific covariates:

$$
\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01} w_{j}+u_{0 j} \\
& \beta_{1 j}=\gamma_{10}+\gamma_{11} w_{j}+u_{1 j}
\end{aligned}
$$

\diamond 'Intercepts and slopes as outcomes'

- Substitute level-2 models into level-1 model:

$$
\begin{aligned}
y_{i j} & =\underbrace{\gamma_{00}+\gamma_{01} w_{j}+u_{0 j}}_{\beta_{0 j}}+\underbrace{\left(\gamma_{10}+\gamma_{11} w_{j}+u_{1 j}\right)}_{\beta_{1 j}} x_{i j}+\epsilon_{i j} \\
& =\gamma_{00}+\gamma_{10} x_{i j}+\gamma_{01} w_{j}+\gamma_{11} w_{j} x_{i j}+u_{0 j}+u_{1 j} x_{i j}+\epsilon_{i j} \\
& \equiv \beta_{1}+\beta_{2} x_{i j}+\beta_{3} w_{j}+\beta_{4} w_{j} x_{i j}+\zeta_{1 j}+\zeta_{2 j} x_{i j}+\epsilon_{i j}
\end{aligned}
$$

- γ_{11} (or β_{4}) represents a cross-level interaction between w_{j} (level 2) and $x_{i j}$ (level 1)

Maximum likelihood estimates for random intercept (RI) and random coefficient (RC) models

- Inner London School data (65 schools)
- Graduate Certificate of Secondary Education (GCSE) score (age 16) $y_{i j}$
- London Reading Test (LRT) score before entering school (age 11) $x_{i j}$
- GCSE and LRT standardized to mean=0, sd=10 (in larger sample)
- Model:

$$
y_{i j}=\underbrace{\left(\beta_{1}+\zeta_{1 j}\right)}_{\text {Intercept for school } j}+\underbrace{\left(\beta_{2}+\zeta_{2 j}\right)}_{\text {Slope for school } j} x_{i j}+\epsilon_{i j}
$$

- With the usual assumptions

	RI Model			RC Model	
Parameter	Est	$($ SE $)$		Est	(SE)
Fixed part					
β_{1}	0.02	(0.40)		-0.12	(0.40)
β_{2} [LRT]	0.56	(0.01)		0.56	(0.02)
Random part					
$\sqrt{\psi_{11}}$	3.04		3.01		
$\sqrt{\psi_{22}}$		0.12			
ρ_{21}			0.50		
$\sqrt{\theta}$	7.52				
Log-likelihood	-14024.80		-14004.61		

- $H_{0}: \psi_{22}=0\left(\Rightarrow \psi_{21}=0\right) ; \quad$ in other words $\zeta_{2 j}=0$ for all j
- If null hypothesis is true, likelihood ratio (or deviance) statistic G^{2} usually has a χ^{2} distribution with degrees of freedom equal to difference in number of parameters, here $2 \Rightarrow p$-value is <0.001
- However, for variance component ψ_{22}, null hypothesis is on boundary of parameter space since $\psi_{22} \geq 0$
- Sampling distribution of G^{2} under null hypothesis a 1:1 mixture of $\chi^{2}(2)$ and mass at 0
\Rightarrow divide p-value of conventional test by 2
- p-value based on χ^{2} distribution with d.f. $=2$ is $p<0.001$
- Dividing by 2 gives same conclusion: random intercept model rejected in favor of random coefficient model
(c)Rabe-Hesketh\&Skrondal - p. 57

Illustration: Lack of invariance to translation and heteroscedasticity

- Graphs of cluster-specific regression lines (with $\beta_{1}=\beta_{2}=0$), illustrating effect of translation of $x_{i j}$:

Large ψ_{11}, negative ψ_{21}

Small ψ_{11}, positive ψ_{21}

- Variance of $\zeta_{1 j}+\zeta_{2 j} x_{i j}$, and hence of total residual $\xi_{i j}$ decreases with $x_{i j}$ and increases again

Interpreting random part

- $\sqrt{\psi_{11}}$: Standard deviation of intercepts
- Has same units (scale) as $y_{i j}$ and β_{1}
\Rightarrow estimate rescaled when $y_{i j}$ rescaled
$\Rightarrow 95 \%$ of clusters expected to have intercepts in range
$\beta_{1} \pm 1.96 \sqrt{\psi_{11}}$
- Is standard deviation of vertical positions of cluster-specific regression lines were $x_{i j}=0$
\Rightarrow estimate changes if $x_{i j}$ translated (e.g., mean-centered)
- $\sqrt{\psi_{22}}$: Standard deviation of slopes
- Has same units as β_{2} (units of $y_{i j}$ divided by units of $x_{i j}$)
\Rightarrow cannot compare directly with $\sqrt{\psi_{11}}$
\Rightarrow estimate rescaled if either $x_{i j}$ or $y_{i j}$ are rescaled
$\Rightarrow 95 \%$ of clusters expected to have slopes in range
$\beta_{2} \pm 1.96 \sqrt{\psi_{22}}$

Interpreting random part (cont'd)

- ρ_{21} : Correlation between intercepts and slopes
- Has no units $\left(-1 \leq \rho_{21} \leq 1\right)$
- Is tendency for clusters with large intercepts to have large slopes \Rightarrow estimate changes if $x_{i j}$ translated
- Note: Never set $\rho_{21}=0$ (non-equivalent models if $x_{i j}$ translated)
- $\sqrt{\theta}$: Standard deviation of level-1 residual $\epsilon_{i j}$
- Has same units as $y_{i j}, \beta_{1}$ and $\sqrt{\psi_{11}}$ \Rightarrow estimate rescaled if $y_{i j}$ rescaled
- Is amount of scatter around cluster-specific regression lines
- Note: Since the scaling if $y_{i j}$ and $x_{i j}$ and the translation of $x_{i j}$ matter for interpreting the random part, make meaningful choices
- e.g., if $x_{i j}$ is annual income in $\$$, express it as number of thousands above the average, i.e., generate transformed variable $z_{i j}=\frac{x_{i j}-\bar{x}_{\text {.. }}}{1000}$

Interpreting random part
 for Inner London Schools

Parameter	Est	(SE)
β_{1}	-0.12	(0.40)
$\beta_{2}[\mathrm{LRT}]$	0.56	(0.02)
$\sqrt{\psi_{11}}$	3.01	
$\sqrt{\psi_{22}}$	0.12	
ρ_{21}	0.50	
$\sqrt{\theta}$	7.44	

- 95% of intercepts are in the range -6.0 to $5.8(-0.12 \pm 1.96 \times 3.01)$
- 95% of slopes are in the range 0.32 to $0.80(0.56 \pm 1.96 \times 0.12)$
- When LRT is at its mean, the SD of the school means is 3.01 , less than half the within-school SD of 7.44

Warnings about random coefficient models (cont'd)

- Variance-covariance matrix in random part may (try to) become non 'positive semi-definite' (e.g., negative variances, correlations greater than 1 or less than -1)
If software does not allow this, get convergence problems
- It may help to translate and rescale $x_{i j}$, or to simplify the model
- Overall message: Include random slopes only where strongly suggested by theory

III. Multilevel logistic regression

- Introduction to ordinary logistic regression
- Random intercept logistic regression
- Conditional and marginal relationships

Probabilities, odds and odds ratio

- Probability \equiv Proportion of people agreeing in population (Expected number of successes per trial)

$$
0 \leq \operatorname{Pr}\left(y_{i}=1\right) \leq 1
$$

- Probability of agreeing in 1982 estimated as $\widehat{\operatorname{Pr}}\left(y_{i}=1 \mid x_{i}=0\right)=\frac{122}{345}=0.354$
- Probability of agreeing in 1994 estimated as $\widehat{\operatorname{Pr}}\left(y_{i}=1 \mid x_{i}=1\right)=\frac{268}{1900}=0.141$
- Odds \equiv Number of people agreeing per person disagreeing in population (Expected number of successes per failure)

$$
0 \leq \operatorname{Odds}\left(y_{i}=1\right) \leq \infty
$$

- Odds of agreeing in 1982 estimated as $\widehat{\text { Odds }}\left(y_{i}=1 \mid x_{i}=0\right)=\frac{122}{223}=0.547$
- Odds of agreeing in 1994 estimated as $\widehat{\operatorname{Odds}}\left(y_{i}=1 \mid x_{i}=1\right)=\frac{268}{1632}=0.164$
- Odds ratio $(\mathrm{OR})=\frac{\operatorname{Odds}\left(y_{i}=1 \mid x_{i}=1\right)}{\text { Odds }\left(y_{i}=1 \mid x_{i}=0\right)}$
- Odds ratio is estimated as $\widehat{O R}=\frac{0.164}{0.547}=0.300$

Example: Attitudes to women's roles

- U.S. General Social Survey (GSS), independent samples in 1982 and 1994
- Responses to the question "Do you agree or disagree with this statement?"
- "Women should take care of running their homes and leave running the country to men"

Year	Agree $\left(y_{i}=1\right)$	Disagree $\left(y_{i}=0\right)$	Total
$1982\left(x_{i}=0\right)$	122	223	345
$1994\left(x_{i}=1\right)$	268	1632	1900
Total	390	1855	2245

- x_{i} is a dummy variable for year being 1994

Logistic regression

- Logistic regression

$$
\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)=\frac{\exp \left(\beta_{1}+\beta_{2} x_{i}\right)}{1+\exp \left(\beta_{1}+\beta_{2} x_{i}\right)}=\frac{\operatorname{Odds}\left(y_{i}=1 \mid x_{i}\right)}{1+\operatorname{Odds}\left(y_{i}=1 \mid x_{i}\right)}
$$

- Log-odds

$$
\log \left[\operatorname{Odds}\left(y_{i}=1 \mid x_{i}\right)\right] \equiv \operatorname{logit}\left[\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)\right]=\beta_{1}+\beta_{2} x_{i}
$$

- Difference in log-odds for unit change in x_{i} (from a to $a+1$)

$$
\begin{gathered}
\log \left[\text { Odds }\left(y_{i}=1 \mid x_{i}=a+1\right)\right]-\log \left[\operatorname{Odds}\left(y_{i}=1 \mid x_{i}=a\right)\right] \\
=\left[\beta_{1}+\beta_{2}(a+1)\right]-\left[\beta_{1}+\beta_{2} a\right]=\beta_{2}
\end{gathered}
$$

- Odds ratio for unit change in x_{i} (from a to $a+1$)

$$
\frac{\operatorname{Odds}\left(y_{i}=1 \mid x_{i}=a+1\right)}{\operatorname{Odds}\left(y_{i}=1 \mid x_{i}=a\right)}=\exp \left(\beta_{2}\right)
$$

Example:

Logistic regression for attitudes to women's roles

- Variables:
- Dummy for year being $1994\left(x_{i}\right)$
- Agreeing with statement $\left(y_{i}\right)$
- Maximum likelihood estimates:

	Est	(SE)	$\mathrm{OR}=\exp (\beta)$	$(95 \% \mathrm{CI})$
β_{1}	-0.60	(0.11)		
$\beta_{2}[1994]$	-1.20	(0.13)	0.30	$(0.23,0.39)$

- $95 \% \mathrm{Cl}$ for OR is $\exp \left(\widehat{\beta}_{2}-1.96 \mathrm{SE}_{\widehat{\beta}_{2}}\right), \exp \left(\widehat{\beta}_{2}+1.96 \mathrm{SE}_{\widehat{\beta}_{2}}\right)$
- Standard error for odds ratio not useful

Logistic regression as generalized linear model

- Linear predictor:

$$
\nu_{i} \equiv \beta_{1}+\beta_{2} x_{i}
$$

- Conditional expectation of y_{i} :

$$
\mu_{i} \equiv \mathbf{E}\left(y_{i} \mid x_{i}\right)=\mathbf{E}\left(y_{i} \mid \nu_{i}\right)
$$

- For continuous responses, this is the population mean
- For dichotomous responses $(0,1)$, this is the probability $\operatorname{Pr}\left(y_{i j}=1 \mid \nu_{i}\right)$

Logistic regression as generalized linear model (cont'd)

- Link function $g()$ linking conditional expectation to linear predictor:

$$
g\left(\mu_{i}\right)=\nu_{i}
$$

- Linear regression: $\mu_{i}=\nu_{i}$ (identity link)
- Logistic regression: $\operatorname{logit}\left(\mu_{i}\right) \equiv \log \left[\frac{\mu_{i}}{1-\mu_{i}}\right]=\nu_{i}$ (logit link)
- Probit regression: $\Phi^{-1}\left(\mu_{i}\right)=\nu_{i}$ (probit link)
- Distribution of y_{i} given μ_{i} from exponential family:
- Linear regression: Normal with mean μ_{i} and constant variance θ
- Logit and probit: Bernoulli with probability μ_{i} (or binomial $\left.B\left(1, \mu_{i}\right)\right)$ - variance is $\mu_{i}\left(1-\mu_{i}\right)$

Latent response y_{i}^{*}

- A continuous latent (unobserved) response y_{i}^{*} is often assumed to underlie the observed dichotomous response y_{i}
- Observed response $y_{i}=1$ if latent response y_{i}^{*} exceeds threshold 0 and $y_{i}=0$ otherwise
- When asked to 'agree' or 'disagree' with a statement, respondent really agrees or disagrees to a certain extent (continuous scale), but is forced to choose one of the two responses
- y_{i}^{*} can be viewed as the propensity to have the ' 1 ' response or the utility difference between alternatives ' 1 ' and ' 0 '
\diamond e.g., the propensity (or inclination) to have a child vaccinated has to exceed some limit for the parent to have the child vaccinated
- Death results when some continuous frailty exceeds a limit, or when exposure to some hazardous materials exceeds a limit

Latent response y_{i}^{*} (cont'd)

Latent response formulation

- Idea of latent response introduced by Pearson in 1901
- Latent response model is a linear regression model
- Yule remarked in 1912:
...all those who have died of smallpox are equally dead: no one is more dead or less dead than another, and the dead are quite distinct from the survivors
- Pearson and Heron responded in 1913:
...if Mr Yule's views are accepted, irreperable damage will be done to the growth of modern statistical theory
- Latent response models useful even if we do not believe in y_{i}^{*}

$$
y_{i}^{*}=\beta_{1}+\beta_{2} x_{i}+\epsilon_{i}
$$

- Observed response results as follows (deterministic):

$$
y_{i}= \begin{cases}1 & \text { if } y_{i}^{*}>0 \\ 0 & \text { otherwise }\end{cases}
$$

- Logistic regression model:
- ϵ_{i} has a standard logistic distribution (variance $\pi^{2} / 3$)
- Probit model:
- ϵ_{i} has a standard normal distribution (variance 1)

Latent response formulation of logistic regression

Equivalence of generalized linear model and latent response formulation

- Can calculate the probability that $y_{i}=1$ using latent resonse formulation:

$$
\begin{aligned}
\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right) & =\operatorname{Pr}\left(y_{i}^{*}>0 \mid x_{i}\right)=\operatorname{Pr}\left(\beta_{1}+\beta_{2} x_{i}+\epsilon_{i}>0 \mid x_{i}\right) \\
& =\operatorname{Pr}\left(-\epsilon_{i} \leq \beta_{1}+\beta_{2} x_{i} \mid x_{i}\right) \\
& =\operatorname{Pr}\left(\epsilon_{i} \leq \beta_{1}+\beta_{2} x_{i} \mid x_{i}\right), \quad \text { the CDF of } \epsilon_{i}
\end{aligned}
$$

- Logistic CDF of ϵ_{i} results in logistic regression:

$$
\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)=\frac{\exp \left(\beta_{1}+\beta_{2} x_{i}\right)}{1+\exp \left(\beta_{1}+\beta_{2} x_{i}\right)}
$$

- Standard normal CDF $\Phi(\cdot)$ of ϵ_{i} results in probit regression:

$$
\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)=\Phi\left(\beta_{1}+\beta_{2} x_{i}\right)
$$

Example: Toenail infection

- 337 patients with toenail infection randomized to receive terbinafine or itraconazole
- Assessments scheduled at 7 visits; weeks $0,4,8,12,24,36$, and 48
- Variables:
- Onycholysis (separation of nail plate from nail bed) $y_{i j}$ (0:none or mild, 1 :moderate or severe)
- Treatment group (0:itraconazole, 1 :terbinafine) $x_{2 j}$
- Exact timing of visit in months $x_{3 i j}$
- Visit number (1,2,...,7)

Plot of raw estimates of marginal probabilities

- Proportion with onycholysis at each occasion, versus average time at each visit since randomization

Freq.	Percent	Cum.	Pattern
224	76.19	76.19	1111111
21	7.14	83.33	11111.1
10	3.40	86.73	1111.11
6	2.04	88.78	$111 \ldots$
5	1.70	90.48	$1 \ldots \ldots$
5	1.70	92.18	$11111 \ldots$
4	1.36	93.54	$1111 \ldots$
3	1.02	94.56	$11 \ldots \ldots$
3	1.02	95.58	111.111
13	4.42	100.00	(other patterns)
294	100.00		xxxxxxx

- 224 patients have complete data, 21 patients missed visit 6, 10 patients missed visit 5, 6 patients dropped out after visit 3, etc.

Logistic regression model for marginal probabilities

```
logit[Pr(yyij}=1|\mp@subsup{x}{2j}{},\mp@subsup{x}{3ij}{})]=\mp@subsup{\beta}{1}{}+\mp@subsup{\beta}{2}{}\mp@subsup{x}{2j}{}+\mp@subsup{\beta}{3}{}\mp@subsup{x}{3ij}{}+\mp@subsup{\beta}{4}{}\mp@subsup{x}{2j}{}\mp@subsup{x}{3ij}{
```

- Regression coefficients and odds-ratios have marginal or population averaged interpretations, comparing prevalences for different population strata
- Plot of predicted probabilities together with raw estimates:

Random intercept logistic regression

- Ordinary logistic regression fits marginal proportions quite well
- However, unobserved heterogeneity between subjects and dependence within subjects are ignored
- Include a random intercept ζ_{j} :
$\operatorname{logit}\left[\operatorname{Pr}\left(y_{i j}=1 \mid x_{2 j}, x_{3 i j}, \zeta_{j}\right)\right]=\beta_{1}+\beta_{2} x_{2 j}+\beta_{3} x_{3 i j}+\beta_{4} x_{2 j} x_{3 i j}+\zeta_{j}$
or

$$
y_{i j}^{*}=\beta_{1}+\beta_{2} x_{2 j}+\beta_{3} x_{3 i j}+\beta_{4} x_{2 j} x_{3 i j}+\zeta_{j}+\epsilon_{i j}
$$

- ζ_{j} enters in same manner as observed covariates
- Assume $\zeta_{j} \sim \mathrm{~N}(0, \psi)$, independent of $x_{2 j}, x_{3 i j}$, and of $\epsilon_{i j}$ in latent response formulation ($\epsilon_{i j}$ has standard logistic distribution)
- Regression coefficients and odds-ratios have conditional or cluster-specific interpretations, comparing probabilities holding ζ_{j} constant

Estimation: Approximate methods

- Penalized Quasilikelihood (PQL)
- Two versions: First and second order (PQL-1,PQL-2), the latter being better
\diamond PQL-1 in MLwiN, HLM and SAS: GLIMMIX
\diamond PQL-2 in MLwin
\diamond Even PQL-2 produces biased estimates for small clusters and large level-2 variances
- Laplace: R: Imer and Stata: xtmelogit
- Sixth order Laplace in HLM
- H-likelihood in Genstat
- Methods do not provide a likelihood

Estimation: Maximum likelihood

- Estimation for categorical responses difficult because marginal (or integrated) likelihood involves integrals that do not have closed form
- Numerical integration
- Gauss-Hermite (ordinary) quadrature used in MIXOR/MIXNO (two-level only) and amL
- Adaptive quadrature superior, particularly for large clusters and large variances. Available in SAS: GLIMMIX and Stata: gllamm, xtmelogit, etc., S-PLUS: glme, Mplus
- Monte Carlo integration
- Simulated maximum likelihood in nlogit, Stata: mixlogit
- Monte Carlo EM - no software?
- Markov chain Monte Carlo (MCMC) with vague priors approximates maximum likelihood and available in MLwiN and WinBUGS
(C)Rabe-Hesketh\&Skrondal-p. 82

Maximum likelihood estimates

Parameter	Marginal effects Ordinary logistic		Conditional effects Random intercept logistic	
	OR	(95\% CI)	OR	(95\% CI)
Fixed part				
$\exp \left(\beta_{2}\right)$ [treatment]	1.00	(0.74, 1.36)	0.85	(0.27, 2.65)
$\exp \left(\beta_{3}\right)$ [month]	0.84	(0.81, 0.88)	0.68	(0.62, 0.74)
$\exp \left(\beta_{4}\right)$ [trt_month]		(0.87, 1.01)	0.87	(0.76, 1.00)
Random part				
ψ	16.08			
Log-likelihood		-908.01		-625.39

Intraclass correlation of latent responses

- Correlation between observed responses in the same cluster, given the covariates

$$
\operatorname{Cor}\left(y_{i j}, y_{i^{\prime} j} \mid x_{2 j}, x_{3 i j}, x_{3 i^{\prime} j}\right)
$$

is a function of $x_{2 j}, x_{3 i j}$, and $x_{3 i^{\prime} j}$

- Therefore, report correlation between latent responses in same cluster, given covariates

$$
\operatorname{Cor}\left(y_{i j}^{*}, y_{i^{\prime} j}^{*} \mid x_{2 j}, x_{3 i j}, x_{3 i^{\prime} j}\right)=\frac{\psi}{\psi+\pi^{2} / 3}
$$

- Estimated intraclass correlation for toenail data:

$$
\frac{\widehat{\psi}}{\widehat{\psi}+\pi^{2} / 3}=0.83
$$

Marginal and conditional relationships (cont'd)

Marginal and conditional relationships

- Note that marginal OR closer to 1 than conditional OR
- Marginal probabilities from random intercept model

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{i j}=1 \mid x_{2 j}, x_{3 i j}\right) \\
& \quad=\int \operatorname{Pr}\left(y_{i j}=1 \mid x_{2 j}, x_{3 i j}, \zeta_{j}\right) g\left(\zeta_{j} ; 0, \widehat{\psi}\right) \mathrm{d} \zeta_{j} \\
& \quad=\int \frac{\exp \left(\widehat{\beta}_{1}+\widehat{\beta}_{2} x_{2 j}+\widehat{\beta}_{3} x_{3 i j}+\widehat{\beta}_{4} x_{2 j} x_{3 i j}+\zeta_{j}\right)}{1+\exp \left(\widehat{\beta}_{1}+\widehat{\beta}_{2} x_{2 j}+\widehat{\beta}_{3} x_{3 i j}+\widehat{\beta}_{4} x_{2 j} x_{3 i j}+\zeta_{j}\right)} g\left(\zeta_{j} ; 0, \widehat{\psi}\right) \mathrm{d} \zeta_{j}
\end{aligned}
$$

Reason for difference between conditional and marginal effects: Using latent response formulation

- Larger residual standard deviation, $\operatorname{Var}\left(\zeta_{j}+\epsilon_{i j}\right)>\operatorname{Var}\left(\epsilon_{i j}\right)$, requires larger slope to obtain same marginal response probabilities:

Conditional and marginal effects

for probit random intercept model

- Probit random intercept model: $y_{i j}^{*}=\beta_{1}+\beta_{2} x_{i j}+\underbrace{\zeta_{j}+\epsilon_{i j}}_{\xi_{i j}}$

$$
\zeta_{j} \sim \mathrm{~N}(0, \psi), \epsilon_{i j} \sim \mathrm{~N}(0,1) \Rightarrow \xi_{i j}=\zeta_{j}+\epsilon_{i j} \sim \mathrm{~N}(0, \psi+1)
$$

- Conditional probability

$$
\operatorname{Pr}\left(y_{i j}=1 \mid x_{i j}, \zeta_{j}\right)=\Phi\left(\beta_{1}+\beta_{2} x_{i j}+\zeta_{j}\right)
$$

- Marginal probability

$$
\begin{aligned}
\operatorname{Pr}\left(y_{i j}=1 \mid x_{i j}\right) & =\operatorname{Pr}\left(y_{i j}^{*}>0 \mid x_{i j}\right)=\operatorname{Pr}\left(\beta_{1}+\beta_{2} x_{i j}+\xi_{i j}>0 \mid x_{i j}\right) \\
& =\operatorname{Pr}\left(-\xi_{i j} \leq \beta_{1}+\beta_{2} x_{i j} \mid x_{i j}\right)=\operatorname{Pr}\left(\xi_{i j} \leq \beta_{1}+\beta_{2} x_{i j} \mid x_{i j}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\xi_{i j}}{\sqrt{\psi+1}} \leq \frac{\beta_{1}+\beta_{2} x_{i j}}{\sqrt{\psi+1}} \right\rvert\, x_{i j}\right) \\
& =\Phi\left(\frac{\beta_{1}+\beta_{2} x_{i j}}{\sqrt{\psi+1}}\right)
\end{aligned}
$$

- Marginal effect attenuated or closer to zero: $\left|\beta_{2} / \sqrt{\psi+1}\right| \leq\left|\beta_{2}\right|$

Illustration:

Conditional versus marginal relationship

cluster-specific (random sample)
median
_——marginal or population-averaged

Interpretation of regression parameter for within-cluster covariate

- Conditional effects or subject-specific effects:
- Subject-specific odds ratios, e.g. for [month] $a+1$ versus a when [treatment] $=0$
$\exp \left(\beta_{3}^{\mathrm{C}}\right)=\frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{i j}=a+1, x_{j}=0, \zeta_{j}\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{i j}=a+1, x_{j}=0, \zeta_{j}\right)} / \frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{i j}=a, x_{j}=0, \zeta_{j}\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{i j}=a, x_{j}=0, \zeta_{j}\right)}$
\diamond Comparing odds for particular subject j (conditional on ζ_{j})
- Marginal effects or population-averaged effects:
- Marginal odds ratios
$\exp \left(\beta_{3}^{\mathrm{M}}\right)=\frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{i j}=a+1, x_{j}=0\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{i j}=a+1, x_{j}=0\right)} / \frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{i j}=a, x_{j}=0\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{i j}=a, x_{j}=0\right)}$
\diamond Comparing odds for population strata (not conditional on ζ_{j})

Interpretation of regression parameter for between-cluster covariate

- Conditional effects or subject-specific effects:
- Subject-specific odds ratios, e.g. for [treatment] 1 versus 0 when $[$ month $]=1$
$\exp \left(\beta_{2}^{\mathrm{C}}+\beta_{4}^{\mathrm{C}}\right)=\frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{j}=1, x_{i j}=1, \zeta_{j}\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{j}=1, x_{i j}=1, \zeta_{j}\right)} / \frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{j}=0, x_{i j}=1, \zeta_{j}\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{j}=0, x_{i j}=1, \zeta_{j}\right)}$
\diamond Comparing counterfactual odds for particular subject j
- Marginal effects or population-averaged effects:
- Marginal odds ratios
$\exp \left(\beta_{2}^{\mathrm{M}}+\beta_{4}^{\mathrm{M}}\right)=\frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{j}=1, x_{i j}=1\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{j}=1, x_{i j}=1\right)} / \frac{\operatorname{Pr}\left(y_{i j}=1 \mid x_{j}=0, x_{i j}=1\right)}{\operatorname{Pr}\left(y_{i j}=0 \mid x_{j}=0, x_{i j}=1\right)}$
\diamond Comparing odds for population strata

- Marginal effects

- Of interest for policy, e.g. public health
- Not invariant across populations (depend on ψ)
- Conditional effects
- Of interest for individuals, e.g. patients
- More useful for investigating causal processes
- More invariant across populations

IV. Longitudinal data and alternatives to multilevel modeling

- Longitudinal data
- Example: Wage and experience
- Linear growth curve models
- Nonlinear growth
- Example: Children's growth
- Fixed effects approach
- Marginal versus multilevel approach
- Autoregressive approaches
- Dropout and missing data
- Three-level models
- Example: Sustaining effects study

Raudenbush and Bryk -style notation for two-level logistic models

- Level-1 model

$$
\begin{aligned}
\varphi_{i j} & \equiv \operatorname{Pr}\left(y_{i j}=1 \mid \nu_{i j}\right)=\mathrm{E}\left(y_{i j} \mid \nu_{i j}\right) \\
y_{i j} \mid \varphi_{i j} & \sim \operatorname{Binomial}\left(1, \varphi_{i j}\right) \equiv \operatorname{Bernoulli}\left(\varphi_{i j}\right) \quad \text { ('sampling model') } \\
\operatorname{logit}\left(\varphi_{i j}\right) & =\beta_{0 j}+\beta_{1 j} x_{1 i j}+\beta_{2 j} x_{2 i j} \equiv \nu_{i j} \quad \text { ('structural model') }
\end{aligned}
$$

- Level-2 models

$$
\begin{aligned}
\beta_{0 j} & =\gamma_{00}+\gamma_{01} w_{1 j}+\gamma_{02} w_{2 j}+u_{0 j} \\
\beta_{1 j} & =\gamma_{10}+\gamma_{11} w_{1 j}+\gamma_{12} w_{2 j}+u_{1 j} \\
\beta_{2 j} & =\gamma_{20}
\end{aligned}
$$

where

$$
\left(u_{0 j}, u_{1 j}\right)^{\prime} \sim \mathbf{N}(\mathbf{0}, \boldsymbol{\tau}), \quad \boldsymbol{\tau}=\left[\begin{array}{cc}
\tau_{00} & \tau_{01} \\
\tau_{10} & \tau_{11}
\end{array}\right]
$$

Longitudinal studies

- Panel surveys
- All subjects followed up at the same panel waves \Longrightarrow balanced data
- Cohort studies (as defined in epidemiology)
- Cohort is any group of individuals, often same age ("birth cohort")
- Generally, not followed up at the same time \Longrightarrow unbalanced data
- Intervention studies and clinical trials are special cases
- Other related types of studies (not discussed here)
- Time-series for a single unit over time
- Longitudinal information collected retrospectively \Longrightarrow Recall bias
- Survival, durations, or time-to event data

Longitudinal data

Longitudinal data (cont'd)

- Variables for subject j at occasion (e.g., panel wave) i
- Response variable (time-varying) $y_{i j}$
- Explanatory variable
\diamond Subject-specific (time-constant) x_{j}, e.g. gender
\diamond Occasion-specific x_{i}, e.g. calendar time
\diamond Subject and occasion-specific (time-varying) $x_{i j}$, e.g. marital status
- Longitudinal data are balanced if occasions for each subject correspond to same time points
- Can treat responses at different occasions as different variables \& use multivariate methods (e.g., Structural equation modeling)
- Can model means and covariances more freely
- Intermittent missing data and dropout or attrition are common

Three time scales

- Age A : Time since birth
- Period P : Current calendar time (time since birth of Christ)
- Cohort C : Calendar time at time of birth

- Alternative age-like timescale: Time since subject-specific event such as surgery (then cohort becomes time of surgery)

Age-Period-Cohort effects: Cross-sectional study

- One period P
\Longrightarrow cannot estimate effect of period
- Different ages $A_{j}, \quad A_{j}=P-C_{j}$
\Longrightarrow age and cohort effects confounded

e.g., explanations for older people
being more conservative:
(1) later stage in life A_{j}
(2) born longer ago (into a different 'era') C_{j}

Age-Period-Cohort effects:

Longitudinal study, one cohort

- One cohort C
\Longrightarrow cannot estimate effect of cohort
- Different periods P_{i} and ages $A_{i}, \quad A_{i}=P_{i}-C$
\Longrightarrow period and age effects confounded

e.g., explanations for salary increases:
(1) more experience A_{i}
(2) inflation P_{i}

Example: Wage and experience

- US National Longitudinal Survey of Youth 1979 (NLSY79)
- Representative sample of non-institutionalized, civilian U.S. youth
- 6,111 men and women, aged 14-21 in Dec 31, 1978
- Subsample of 545 considered here:
\diamond Full-time working males who completed schooling by 1980
\diamond Complete data for 1980-1987
- Variables:
\diamond Subject identifier j
\diamond Log hourly wage $\operatorname{In} y_{i j}$
\diamond Education (number of years) E_{j}
\diamond Labor market experience (in years) $L_{i j}$
\diamond Period (1980-1987) P_{i}
- How does log hourly wage depend on labor market experience $L_{i j}$ and period P_{i}, controlling for education E_{j} ?

Age-Period-Cohort effects:
 Longitudinal study, several cohorts

- Several cohorts C_{j}, different periods P_{i} and ages $A_{i j}, A_{i j}=P_{i}-C_{j}$ \Longrightarrow can estimate effects of two time scales, but confounded with third

Pick time scales believed to be most important
\Rightarrow e.g., Conservatism depends on age and cohort (ignore period)
\Rightarrow e.g., Salary depends on age and period (ignore cohort)

Other terms for design:
Accelerated longitudinal
Cohort-sequential

Time scales in NLSY79

- Note that there are at least 5 time-scales:

$$
A_{i j}=6+E_{j}+L_{i j}=P_{i}-C_{j}
$$

- $A_{i j}$ determined by (and thus confounded with) E_{j} and $L_{i j}$
- C_{j} determined by (and thus confounded with) $P_{i}, L_{i j}$ and E_{j}
- Random intercept model: $\ln y_{i j}=\beta_{1}+\beta_{2} L_{i j}+\beta_{3} P_{i}+\beta_{4} E_{j}+\zeta_{j}+\epsilon_{i j}$

	Est	(SE)	$\exp ($ Est $)$
Fixed Part:			
β_{1}	-52.99	(23.23)	
$\beta_{2}\left[L_{i j}\right]$	0.04	(0.01)	1.04
$\beta_{3}\left[P_{i}\right]$	0.03	(0.01)	1.03
$\beta_{4}\left[E_{j}\right]$	0.10	(0.01)	1.11
Random Part:			
$\sqrt{\psi}$	0.34		
$\sqrt{\theta}$	0.35		

Linear growth curve models

- Appropriate for balanced or unbalanced data
- In R\&B two-stage formulation, linear growth curve model (level 1):

$$
y_{i j}=\beta_{0 j}+\beta_{1 j} t_{i j}+r_{i j}
$$

- Each subject grows linearly, starting at level $\beta_{0 j}\left(\right.$ when $\left.t_{i j}=0\right)$ and growing at a rate of $\beta_{1 j}$ per unit of time (e.g., year)
- Define level-2 models to explain variability in initial status $\beta_{0 j}$ and growth rate $\beta_{1 j}$ using subject-specific covariate x_{j}

$$
\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01} x_{j}+u_{0 j} \\
& \beta_{1 j}=\gamma_{10}+\gamma_{11} x_{j}+u_{1 j}
\end{aligned}
$$

- Reduced form formulation:

$$
y_{i j}=\beta_{1}+\beta_{2} x_{j}+\beta_{3} t_{i j}+\beta_{4} x_{j} t_{i j}+\zeta_{1 j}+\zeta_{2 j} t_{i j}+\epsilon_{i j}
$$

Nonlinear growth: Piecewise linear model

- Model, with linear spline basis functions $z_{k i j}$

$$
y_{i j}=\beta_{1}+\beta_{2} z_{1 i j}+\cdots+\beta_{K+1} z_{K i j}+\cdots
$$

- Example: $t_{i j}=i, i=0, \ldots, 7$, and spline knots at $\tau_{1}=3, \tau_{2}=6$

$t_{i j}$	Interval	$z_{1 i j}$	$z_{2 i j}$	$z_{3 i j}$
0	1	0	0	0
1	1	1	0	0
2	1	2	0	0
3	1	3	0	0
4	2	3	1	0
5	2	3	2	0
6	2	3	3	0
7	3	3	3	1

Example: Children's growth

- Asian children in Britain weighed from age 6 weeks to 27 months:
- Weight in Kg
- Age in years
- Gender (1:boy, 2:girl)
- Plot of observed trajectories

Maximum likelihood estimates (fixed part)

- Polynomial (quadratic)

	Est	(SE)
β_{1}	3.75	(0.17)
β_{2} [girl]	-0.54	(0.21)
β_{3} [age]	7.81	(0.25)
β_{4} [agesq]	-1.66	(0.09)

- Piecewise linear (4 pieces), knots at 0.5, 1, 2

	Est	(SE)
β_{1}	3.34	(0.18)
β_{2} [girl]	-0.64	(0.20)
β_{3} [age1]	8.71	(0.45)
β_{4} [age2]	3.93	(0.40)
β_{5} [age3]	1.95	(0.70)
β_{6} [age4]	2.40	(0.38)

Estimated subject-specific trajectories

- 'Trellis graph’ of estimated cluster-specific trajectories (for boys)
$\widehat{\mu}_{i j}=\widehat{\beta}_{1}+\widehat{\beta}_{2 \text { girl }_{j}}+\widehat{\beta}_{3 \text { age }}^{i j}$ $+\widehat{\beta}_{4 \text { age }_{i j}}+\widehat{\beta}_{5 \text { age }}^{i j}{ }_{i j}+\widehat{\beta}_{6 \text { age }}^{i j}$ $+\widetilde{\zeta}_{1 j}+\widetilde{\zeta}_{2 j \text { age }_{i j}}$

Fixed-effects models

- Avoid endogeneity or subject-level confounding by using fixed-effects models to estimate within-effects
- Subjects truly act as their own controls
- For linear and log-linear models
- Include dummy variables, or use conditional maximum likelihood (in linear case by sweeping out the subject mean)
- For logistic regression models:
- Cannot include dummy variables for subjects due to incidental parameter problem, leading to inconsistent estimates of within-effects
- Can use conditional logistic regression (conditional maximum likelihood, conditioning on sum of responses for subjects)

Reminder: Marginal versus conditional

$$
y_{i j}=\beta_{1}+\beta_{2} t_{i j}+\underbrace{\zeta_{1 j}+\zeta_{2 j} t_{i j}+\epsilon_{i j}}_{\xi_{i j}}
$$

- Can consider conditional, or subject-specific expectation, given random effects $\zeta_{1 j}, \zeta_{2 j}$:

$$
\mathrm{E}\left(y_{i j} \mid t_{i j}, \zeta_{1 j}, \zeta_{2 j}\right)=\beta_{1}+\beta_{2} t_{i j}+\zeta_{1 j}+\zeta_{2 j} t_{i j}
$$

- Conditional variance is θ and conditional covariances are zero
- Can consider marginal mean, variances and covariances

$$
\mathbf{E}\left(y_{i j} \mid t_{i j}\right)=\beta_{1}+\beta_{2} t_{i j}
$$

$$
\operatorname{Var}\left(y_{i j} \mid t_{i j}\right)=\operatorname{Var}\left(\xi_{i j} \mid t_{i j}\right)=\psi_{11}+2 \psi_{21} t_{i j}+\psi_{22} t_{i j}^{2}+\theta
$$

$\operatorname{Cov}\left(y_{i j}, y_{i^{\prime} j} \mid t_{i j}, t_{i^{\prime} j}\right)=\operatorname{Var}\left(\xi_{i j}, \xi_{i^{\prime} j} \mid t_{i j}, t_{i^{\prime} j}\right)=\psi_{11}+\psi_{21}\left(t_{i j}+t_{i^{\prime} j}\right)+\psi_{22} t_{i j} t_{i^{\prime} j}$

Disadvantages of fixed-effects models

- Cannot include subject-level covariates such as gender
- Inefficient if covariate(s) and/or response variable vary mostly between subjects
- Allows only for subject-specific intercepts (not slopes) for logistic regression
- Not possible for probit or ordinal models
- No direct information on unobserved heterogeneity
- Cannot make predictions for units in new clusters

Marginal covariance matrix for

linear growth curve model (5 occasions, $t=0,1,2,3,4$)

Population-averaged or marginal approach to longitudinal data

Illustration with three time-points

- Instead of modeling individual trajectories (multilevel approach) model mean response and covariance matrix of (total) residual directly as functions of time ('Marginal model')
- Popular residual covariance structures
- Compound symmetric or exchangeable: All variances equal and all covariances (and hence correlations) equal
\diamond If correlation is positive, random intercept model with variance $\psi+\theta$ and covariance ψ
- Autoregressive: Correlations fall off as time lag increases
\diamond Popular special case: first order autoregressive, $\operatorname{AR}(1)$

$$
\operatorname{Cor}\left(\xi_{i j}, \xi_{i^{\prime} j}\right)=\alpha^{\left|t_{i}-t_{i^{\prime}}\right|}
$$

- Unstructured: Each variance and covariance is freely estimated \diamond Seems best, but inefficient (imprecise) if many time points

Generalized estimating equations (GEE)

- Covariance structures for residuals are natural in linear models, giving multivariate regression models that can be estimated by maximum likelihood (ML)
- For binary and other non-continuous outcomes, can pretend that this is still possible
- Specify structures for means and covariances \Rightarrow Quasilikelihood
- Use estimating equations, like "score equations" for ML
- Estimation alternates between estimation of

1. Regression coefficients: Generalized least squares for linearized model
2. Covariance parameters: Moment estimators based on residuals

- Not a true statistical model
- Maximum likelihood estimates of residual variances and correlation matrices (alcohol use data, not discussed here)

Unstructured	AR(1)	Exchangeable	Growth curve model
$\left[\begin{array}{lll}0.52 & 0.77 & 1.11\end{array}\right]$	$\left[\begin{array}{lll}0.80 & 0.80 & 0.80\end{array}\right.$	$\left[\begin{array}{lll}0.80 & 0.80 & 0.80\end{array}\right]$	$\begin{array}{lll}0.60 & 0.72 & 1.15\end{array}$
$\left[\begin{array}{lll}1.00 & & \\ 0.44 & 1.00 & \\ 0.26 & 0.53 & 1.00\end{array}\right]$	$\left[\begin{array}{lll}1.00 & & \\ 0.49 & 1.00 & \\ 0.24 & 0.49 & 1.00\end{array}\right]$	$\left[\begin{array}{lll}1.00 & & \\ 0.40 & 1.00 & \\ 0.40 & 0.40 & 1.00\end{array}\right]$	$\left[\begin{array}{lll}1.00 & & \\ 0.38 & 1.00 & \\ 0.28 & 0.57 & 1.00\end{array}\right]$
-293.0 (6)	-299.3 (2)	-303.2 (2)	-294.3 (4)

Advantages of multilevel over marginal approach

- Multilevel model 'explains' covariance structure in terms of variability in intercepts and slopes
- In marginal model, tempting to specify meaningless structures, such as constant variance over time in growth model (as in standard GEE)
- Multilevel model provides conditional or subject-specific interpretation \Rightarrow stable across populations differing in between-subjects variability
- Multilevel model is proper statistical model for any response type
- Can conceptualize as data-generating mechanism
- Can simulate from the model
- Can derive marginal relationships
- Can make predictions and perform diagnostics based on predictions
- Can perform likelihood ratio tests

Advantages of marginal over multilevel approach

- Permits more flexible covariance structures, e.g., negative intraclass correlation
- For non-continuous responses:
- Marginal approach has marginal or population-averaged interpretation
\diamond Descriptive and easy to interpret; less likely to get extreme coefficients
- Marginal approach via GEE gives consistent estimates of regression coefficients even if covariance structure misspecified (assuming correct fixed part)
- GEE is computationally efficient (e.g., no numerical integration)
©Rabe-Hesketh\&Skrondal - p. 121

Models with autoregressive (AR) residuals

- $\mathrm{AR}(1)$ model for residual, conditioning on previous residual $\epsilon_{i-1, j}$

$$
\epsilon_{i j}=\alpha \epsilon_{i-1, j}+\delta_{i j}, \quad \delta_{i j} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \quad \operatorname{Cor}\left(\epsilon_{i-1, j}, \delta_{i j}\right)=0
$$

- Correlation structure is

$$
\operatorname{Cor}\left(\epsilon_{i j}, \epsilon_{i^{\prime} j}\right)=\alpha^{\left|t_{i j}-t_{i^{\prime} j}\right|}, \quad|\alpha|<1
$$

Models with autoregressive (AR) responses

- $\mathrm{AR}(1)$ model for response, conditioning on previous response $y_{i-1, j}$:

$$
y_{i j}=\beta_{1}+\gamma y_{i-1, j}+\beta_{2} x_{i j}+\epsilon_{i j}, \quad|\gamma|<1
$$

- Also called dynamic, lagged response or transition models
- Should be used only if effect γ of lagged response is of substantive interest ('state dependence’ for binary responses)
- Advantage:
- Easy to implement in linear as well as non-linear models
- Disadvantages:
- Only sensible for equally spaced time-points
- Discarding data: Lags missing for first occasion, missing responses and subsequent responses discarded
- Initial conditions problem if true model contains subject-specific effects ζ_{j}
© Rabe-Hesketh\&Skrondal - p .122

Dropout and missing data

- Dropout or attrition is common where subjects are lost to follow-up from some time onwards (monotone missingness)
- Intermittent missing data also occur
(e.g., subjects miss appointments but return)
- Old-fashioned methods \& software (e.g., repeated measures ANOVA in SPSS) use listwise deletion, where all subjects with incomplete data are dropped
- Multilevel modeling \& other modern methods (\& modern software) use all available data
- Depending on reasons for dropout and missing data and on estimation method, both approaches can give inconsistent estimates

Types of missing data

- Missing completely at random (MCAR):
\Longrightarrow consistent estimates from 'listwise' data but inefficient
- Covariate-dependent dropout
\Longrightarrow consistent estimates if covariates that relate to missingness are included in model
- Missing at random (MAR):
probability of missingness can depend on covariates and observed responses
\Longrightarrow consistent estimates if maximum likelihood used and model correctly specified
- Not missing at random (NMAR):
probability of missingness depends on what that response would have been
\Longrightarrow Problems with all methods; can attempt to model missingness

Example: Sustaining effects study

- Longitudinal survey of children in the six primary school years
- Primary sampling units were urban public primary schools
- 60 schools, 1721 students, 6 panel waves
- Variables:
- Level 1 (occasion)
\diamond [Math]: Math test score from item response model $y_{i j k}$
\diamond [Year]: Year of study minus $3.5 a_{1 i j k}$
(values $-2.5,-1.5,-0.5,0.5,1.5,2.5$)
- Level 2 (child)
\diamond [Black]: Dummy variable for being African American $x_{1 j k}$
\diamond [Hispanic]: Dummy variable for being Hispanic $x_{2 j k}$
- Level 3 (school)
\diamond [Lowinc]: Percentage of students from low income families $w_{1 k}$

Three-level data

- Units i nested in clusters j nested in superclusters k e.g. occasions i in children j in schools k

© Rabe-Hesketh\&Skrondal - p. 126

Variability between and within children

- Observed growth trajectories for 9 children from the same school

Variability between and within schools

- Mean math score over time for children from 10 schools

Maximum likelihood estimates

Fixed part		
	Est	(SE)
$\beta_{1} \equiv \gamma_{000}$ [Cons]	0.141	(0.127)
$\beta_{2} \equiv \gamma_{001} \quad$ [Lowinc]	-0.008	(0.002)
$\beta_{3} \equiv \beta_{01} \quad[\mathrm{Black}]$	-0.502	(0.078)
$\beta_{4} \equiv \beta_{02} \quad$ [Hispanic]	-0.319	(0.086)
$\beta_{5} \equiv \gamma_{100}$ [Year]	0.875	(0.039)
$\beta_{6} \equiv \gamma_{101} \quad$ [Lowinc] \times [Year]	-0.001	(0.000)
$\beta_{7} \equiv \beta_{11} \quad[\mathrm{Black}] \times[$ Year $]$	-0.031	(0.022)
$\beta_{8} \equiv \beta_{12} \quad[$ Hispanic $] \times[$ Year $]$	0.043	(0.025)

Random part	
	Est
$\sqrt{\psi_{11}^{(2)}}$	0.789
$\sqrt{\psi_{22}^{(2)}}$	0.105
$\rho_{21}^{(2)}$	0.561
$\sqrt{\psi_{11}^{(3)}}$	0.279
$\sqrt{\psi_{22}^{(3)}}$	0.089
$\rho_{21}^{(3)}$	0.033
$\sqrt{\theta}$	0.55

$$
\begin{aligned}
y_{i j k}= & \beta_{1}+\beta_{2} w_{1 k}+\beta_{3} x_{1 j k}+\beta_{4} x_{2 j k} \\
& +\beta_{5} a_{1 i j k}+\underbrace{\beta_{6} w_{1 k} a_{1 i j k}+\beta_{7} x_{1 j k} a_{1 i j k}+\beta_{8} x_{2 j k} a_{1 i j k}}_{\text {Interactions }} \\
& +\underbrace{\zeta_{1 j k}^{(2)}+\zeta_{2 j k}^{(2)} a_{1 i j k}}_{\text {Child }}+\underbrace{\zeta_{1 k}^{(3)}+\zeta_{2 k}^{(3)} a_{1 i j k}}_{\text {School }}+\underbrace{\epsilon_{i j k}}_{\text {Occ. }}
\end{aligned}
$$

Interpretation of estimates

- In the middle of primary school, controlling for school mean income,
- black and Hispanic children score on average 0.50 points and 0.32 points lower than white children, respectively
- within ethnic groups, children's mean scores have a standard deviation of 0.79 within schools and 0.28 between schools; the standard deviation of scores around child-specific regression lines is 0.55
- On average, the mean math score increases 0.88 points per year for white children in schools with no low income children and this increase does not differ significantly for blacks or Hispanics
- The average annual increase in mean math scores is somewhat lower in schools with low income children, for a given ethnicity
- After controlling for ethnicity and school mean income, the average annual increase in math scores has a within-school standard deviation of 0.11 and a between-school standard deviation of 0.09

Model using three-stage (R\&B) formulation

- Level-1 model:

$$
y_{i j k}=\pi_{0 j k}+\pi_{1 j k} a_{1 i j k}+e_{i j k}
$$

- Linear growth model
- Level-2 models:

$$
\pi_{p j k}=\beta_{p 0 k}+\beta_{p 1} x_{1 j k}+\beta_{p 2} x_{2 j k}+r_{p j k}, \quad p=0,1
$$

- Mean intercept and slope depend on [Black] and [Hispanic]
- Intercept and slope vary randomly between students within ethnic groups
- Level-3 models:

$$
\beta_{p 0 k}=\gamma_{p 00}+\gamma_{p 01} w_{1 k}+u_{p 0 k}, \quad p=0,1
$$

- Mean intercept and slope depend on [Lowinc]
- Intercept and slope vary randomly between schools with given [Lowinc]

Deriving the reduced form

- Substitute level-3 models into level-2 models

$$
\begin{aligned}
\pi_{p j k} & =\underbrace{\gamma_{p 00}+\gamma_{p 01} w_{1 k}+u_{p 0 k}}_{\beta_{p 0 k}}+\beta_{p 1} x_{1 j k}+\beta_{p 2} x_{2 j k}+r_{p j k} \\
& =\gamma_{p 00}+\gamma_{p 01} w_{1 k}+u_{p 0 k}+\beta_{p 1} x_{1 j k}+\beta_{p 2} x_{2 j k}+r_{p j k}, \quad p=0,1
\end{aligned}
$$

- Substitute level-2 models into level-1 model

```
\(y_{i j k}=\underbrace{\gamma_{000}+\gamma_{001} w_{1 k}+u_{00 k}+\beta_{01} x_{1 j k}+\beta_{02} x_{2 j k}+r_{0 j k}}_{\pi_{0 j k}}\)
    \(+\underbrace{\left(\gamma_{100}+\gamma_{101} w_{1 k}+u_{10 k}+\beta_{11} X_{1 j k}+\beta_{12} X_{2 j k}+r_{1 j k}\right)}_{\pi_{1 j k}} a_{1 i j k}+e_{i j k}\)
    \(=\gamma_{000}+\gamma_{001} w_{1 k}+\beta_{01} x_{1 j k}+\beta_{02} x_{2 j k}\)
    \(+\gamma_{100} a_{1 i j k}+\gamma_{101} w_{1 k} a_{1 i j k}+\beta_{11} x_{1 j k} a_{1 i j k}+\beta_{12} x_{2 j k} a_{1 i j k}\)
    \(+r_{0 j k}+r_{1 j k} a_{1 i j k}+u_{00 k}+u_{10 k} a_{1 i j k}+e_{i j k}\)
```


Further reading

- Snijders \& Bosker (2011): Excellent introduction to MLM
- Fitzmaurice, Laird \& Ware (2011): Most accessible biostatistical book on longitudinal data analysis (LDA)
- Wooldridge (2010): Most accessible econometric book on LDA
- Goldstein (2010): Generalized linear mixed models (GLMM)
- Raudenbush \& Bryk (2002): GLMM
- McCulloch, Searle \& Neuhaus (2008): Theoretical treatment of LMMs and GLMMs

