

- r_i^s is alternative with rank s for unit i. Ranking defined as $R_i = (r_i^1, r_i^2, \cdots, r_i^A)$, e.g. (2, 1, 3)
- R_i is obtained if

 $U_i^{r_i^1} > U_i^{r_i^2} > \dots > U_i^{r_i^A}$

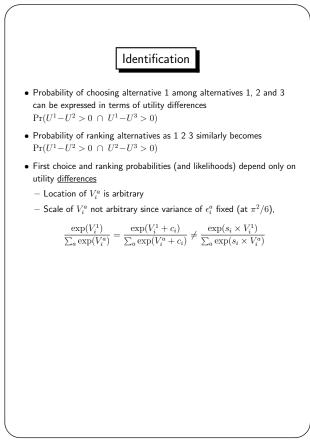
• Luce & Suppes (1965); Beggs, Cardell & Hausman (1981):

 ϵ^a_i independent Gumbel

$$\Pr(R_i) = \frac{\exp(V_i^{r_i^1})}{\sum_{s=1}^{A} \exp(V_i^{r_i^s})} \times \frac{\exp(V_i^{r_i^2})}{\sum_{s=2}^{A} \exp(V_i^{r_i^s})} \times \dots \times \frac{\exp(V_i^{r_i^A})}{\sum_{s=A-1}^{A} \exp(V_i^{r_i^s})}$$
[Exploded logit]

- At each 'stage', a first choice is made among the remaining alternatives.
- Duality with partial likelihood contribution of stratum in Cox regression ('surviving' alternatives as risk sets and choices as failures)
 Survival software applicable
- No 'explosion' for normally distributed utilities!

Slide 9



Independence from Irrelevant Alternatives (IIA)

• Multinomial logit: Odds of alternative a versus b becomes

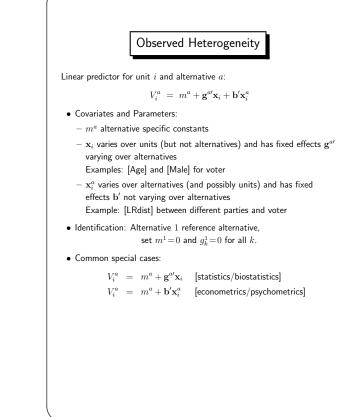
$$\frac{\mathsf{Pr}(a)}{\mathsf{Pr}(b)} = \exp(V_i^a - V_i^b)$$

- Odds independent of properties of other alternatives
- Luce (1959) calls this 'Independence from Irrelevant Alternatives'

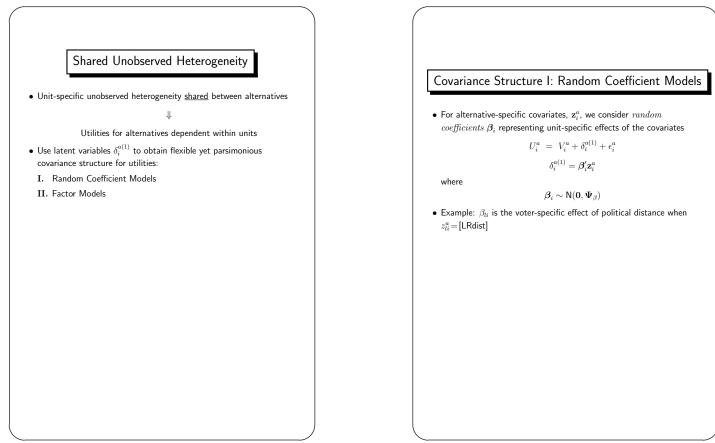
IDENTIFY and SET UP: The partial particles are predicted V_i^{Lab} , whereas core party has linear predictor V_i^{Cons} . $Pr(\text{Lab1 or Lab2 | Cons, \text{Lab1, Lab2}) = \frac{2 \exp(V_i^{\text{Lab}})}{2 \exp(V_i^{\text{Lab}}) + \exp(V_i^{\text{Cons}})}$. (1. Lab1 and Lab2 merge to form a single Lab party: $Pr(\text{Lab | Cons, \text{Lab})} = \frac{\exp(V_i^{\text{Lab}})}{\exp(V_i^{\text{Lab}}) + \exp(V_i^{\text{Cons}})}$. (2. Follows that $Pr(\text{Lab | Cons, \text{Lab})} < Pr(\text{Lab1 or Lab2 | Cons, \text{Lab1, Lab2}})$ $Pr(\text{Lab | Cons, \text{Lab}}) < Pr(\text{Lab1 or Lab2 | Cons, \text{Lab1, Lab2}})$. Merger reduces the probability of voting Lab and increases the probability of voting Cons which is contraintuitive! Would expect no change in probability of voting Lab.

Numerical Examples of Probability Voting Lab					
	Marginal Probability				
	Before merger	After merger			
Heterogeneity	(Lab1 or Lab2)	(Lab)			
none					
$V_i^{\rm Lab} - V_i^{\rm Cons} = 0$	0.67	0.50			
observed					
men: $V_i^{\text{Lab}} - V_i^{\text{Cons}} = -1.2$					
women: $V_i^{\text{Lab}} - V_i^{\text{Cons}} = 2.8$	0.67	0.59			
observed & shared unobserved					
men: $V_i^{\text{Lab}} - V_i^{\text{Cons}} = -0.8 + 4\delta_i$					
women: $V_i^{\text{Lab}} - V_i^{\text{Cons}} = 3.2 + 4\delta_i$					
$\delta_i \sim N(0,1)$	0.67	0.63			
$o_i \sim N(0, 1)$	0.07	0.05			

Slide 13



Slide 14



Covariance Structure II: Factor Models

• One-factor model:

$$U_i^a = V_i^a + \delta_i^{a(1)} + \epsilon_i^a$$
$$\delta_i^{a(1)} = \lambda^a \eta_i$$

where

 $\eta_i \sim \mathsf{N}(0, \psi_\eta)$

 η_i is a *common factor*, λ^a are *factor loadings* and ϵ_i^a are *unique factors* (independent Gumbel as before)

- Two interpretations of factor models:
- 1. λ^a alternative-specific effect of unobserved unit-specific variable η_i
- 2. λ^a an unobserved attribute of alternative a and η_i random effect
- Identification: Likelihood depends only on utility differences,

$$V_i^a - V_i^b + (\lambda^a - \lambda^b)\eta_i + \epsilon_i^a - \epsilon_i^b$$

one loading must be fixed, e.g. $\lambda^1\!=\!0,$ and scale of factor must also be fixed, e.g. $\lambda^2\!=\!1$

- Fragile identification for first choices unless alternative-specific covariates included
- Can be extended to multidimensional factors

V

Slide 17

Multilevel Designs and Latent Variables

- Three-level application:
- Constituencies (level 3) indexed k
- Voters (level 2) indexed j
- Elections (level 1) indexed i
- Latent variables introduced at each level to represent unobserved heterogeneity at that level (induces dependence at all lower levels):
- − Latent variables at election level
 ⇒ Cross-sectional dependence between utilities within voter j at given election i
- Latent variables at voter level \implies Longitudinal dependence between utilities within voter j over elections i
- − Latent variables at constituency level
 ⇒ Dependence between utilities between voters j within constituency k

Slide 18

Multilevel Logistic Regression

• The general three-level model

$$U_{ijk}^{a} = V_{ijk}^{a} + \delta_{ijk}^{(1)} + \delta_{ijk}^{(2)} + \delta_{ijk}^{(3)} + \epsilon_{ijk}^{a}$$

• Election level latent variables $\delta^{(1)}_{ijk}$ are composed as

$$\delta_{ijk}^{(1)} = \boldsymbol{\beta}_{ijk}^{(1)\prime} \mathbf{z}_{ijk}^{a(1)} + \boldsymbol{\lambda}^{a(1)\prime} \boldsymbol{\eta}_{ij}^{(1)}$$

• Voter level latent variables $\delta^{(2)}_{ijk}$ are composed as

$$\delta_{ijk}^{(2)} = \boldsymbol{\beta}_{jk}^{(2)\prime} \mathbf{z}_{ijk}^{a(2)} + \boldsymbol{\gamma}_{jk}^{a(2)\prime} \mathbf{z}_{ijk} + \boldsymbol{\lambda}^{a(2)\prime} \boldsymbol{\eta}_{jk}^{(2)}$$

- <u>Random Coefficients I</u>: $\beta_{jk}^{(2)}$ are voter level random coefficients for *alternative*-specific covariates $\mathbf{z}_{ijk}^{a(2)}$
- (EX: effect of [LRdist] on party preference varies between voters) – <u>Random Coefficients II</u>: $\gamma_{jk}^{a(2)}$ are voter level alternative specific random coefficients for *election*-specific covariates \mathbf{z}_{ijk} (EX: effects of [1987] and [1992] on party preference vary between voters)
- $\underline{\sf Factors}: \lambda^{a(2)\prime} \eta_k^{(2)}$ induces dependence between different elections for a voter
- Constituency level latent variables $\delta^{(3)}_{ijk}$ are composed as

$$\delta_{ijk}^{(3)} = \boldsymbol{\beta}_{k}^{(3)\prime} \mathbf{z}_{iik}^{a(3)} + \boldsymbol{\gamma}_{k}^{a(3)\prime} \mathbf{z}_{ijk} + \boldsymbol{\lambda}^{a(3)\prime} \boldsymbol{\eta}_{k}^{(3)}$$

British Election Panel: Retained Model and Estimates

- Latent variables at voter and constituency levels
- Correlated alternative specific random intercepts

FIXED PART:	Lab vs. Cons Est. (SE)		Lab vs. Cons Est. (SE)	
		Est. (SE)	Est. (SE)	Est. (SE)
	0.70 (0.51)			
a [1007]	0.70 (0.51)			
g_1^a [1987]	0.70 (0.51)	0.71 (0.35)	0.38 (0.20)	0.12 (0.17)
g_2^a [1992]	1.24 (0.53)	0.75 (0.37)	0.51 (0.20)	0.13 (0.18)
g_3^a [Male]	-0.92 (0.31)	-0.67 (0.20)	-0.79 (0.11)	-0.53 (0.09)
g_4^a [Age]	-0.74 (0.10)	-0.37 (0.04)	-0.37 (0.04)	-0.18 (0.03)
g_5^a [Manual]	1.63 (0.35)	0.12 (0.21)	0.65 (0.11)	-0.05 (0.10)
g_6^a [Inflation]	1.27 (0.18)	0.72 (0.13)	0.87 (0.09)	0.18 (0.03)
b [LRdist]	-0.78 (0.04)		-0.62 (0.02)	
RANDOM PART:				
Voter Level				
$\psi_{\gamma^{a}}^{(2)}$	15.85 (2.02)	5.73 (0.85)		
$\psi^{(2)}_{\gamma^{2},\gamma^{3}}$	8.20 (1.09)			
Const. Level				
$\psi_{\gamma^a}^{(3)}$	5.15 (1.07)	0.76 (0.28)		
$\psi^{(3)}_{\gamma^{2},\gamma^{3}}$	1.39 (0.47)			
$\log L$	-2601.33		-2963.68	

The GLLAMM Framework

Generalized Linear Latent and Mixed Models (GLLAMM):

- 1. RESPONSE MODEL: Generalised linear model conditional on latent variables
 - Linear predictor:
 - $-\ensuremath{\mathsf{observed}}\xspace$ covariates
 - multilevel latent variables (factors and/or random coefficients)
 Links and distributions:
 - as for GLM's plus ordinal and polytomous responses and rankings
- 2. STRUCTURAL MODEL: Equations for the latent variables
 - Regressions of latent variables on observed covariates
 - Regressions of latent variables on other latent variables (possibly at higher levels)
- 3. DISTRIBUTION OF LATENT VARIABLES (DISTURBANCES)
 - Multivariate normal
 - Discrete with unspecified distribution

Slide 22

gllamm: Stata program for estimation and prediction

- Sequentially integrate over latent variables, starting with the lowest

- Scale and translate quadrature locations to match the peak of the

• Empirical Bayes (EB) predictions of latent variables and EB standard

• To obtain the likelihood of GLLAMM's, the latent variables must be

- Use Gauss-Hermite quadrature to replace integrals by sums

• Maximum likelihood estimates obtained using Newton-Raphson

integrated out

level using a recursive algorithm

integrand using $\mathbf{adaptive}\ \mathbf{quadrature}$

errors obtained using adaptive quadrature

Slide 21

Some links and references

- Skrondal, A. & Rabe-Hesketh, S. (2002). Multilevel logistic regression for polytomous data and rankings. *Psychometrika*, in press.
- GLLAMM framework:
 - Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2002a). Generalized multilevel structural equation modelling. *Psychometrika*, in press.
 - Skrondal, A. & Rabe-Hesketh, S. (2003). Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hall/ CRC.
- gllamm software:
 - gllamm and manual can be downloaded from
 - http://www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2002b). Reliable
 - estimation of generalized linear mixed models using adaptive quadrature. *The Stata Journal, 2,* 1–21.