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Avoiding zero between-study variance
estimates in random-effects
meta-analysis
Yeojin Chung,a*† Sophia Rabe-Heskethb and In-Hee Choib

Fixed-effects meta-analysis has been criticized because the assumption of homogeneity is often unrealistic and
can result in underestimation of parameter uncertainty. Random-effects meta-analysis and meta-regression are
therefore typically used to accommodate explained and unexplained between-study variability. However, it is not
unusual to obtain a boundary estimate of zero for the (residual) between-study standard deviation, resulting in
fixed-effects estimates of the other parameters and their standard errors. To avoid such boundary estimates, we
suggest using Bayes modal (BM) estimation with a gamma prior on the between-study standard deviation. When
no prior information is available regarding the magnitude of the between-study standard deviation, a weakly
informative default prior can be used (with shape parameter 2 and rate parameter close to 0) that produces
positive estimates but does not overrule the data, leading to only a small decrease in the log likelihood from
its maximum. We review the most commonly used estimation methods for meta-analysis and meta-regression
including classical and Bayesian methods and apply these methods, as well as our BM estimator, to real datasets.
We then perform simulations to compare BM estimation with the other methods and find that BM estimation
performs well by (i) avoiding boundary estimates; (ii) having smaller root mean squared error for the between-
study standard deviation; and (iii) better coverage for the overall effects than the other methods when the true
model has at least a small or moderate amount of unexplained heterogeneity. Copyright © 2013 John Wiley &
Sons, Ltd.

Keywords: random-effects meta-analysis; variance estimation; Bayesian posterior mode; penalized maximum
likelihood

1. Introduction

Meta-analysis combines estimates of associations, or effect sizes, from several studies to estimate an
overall effect size. Two common approaches are fixed-effects and random-effects meta-analysis. In fixed-
effects meta-analysis, the estimates yi of effect size from individual studies i are assumed to differ from
the true overall effect size � only because of lack of precision (sampling variability and measurement
error),

yi D �C �i ; i D 1; : : : ; k (1)

where �i is the estimation error for study i with standard deviation estimated by the estimated standard
error si of the effect size estimate yi for study i .

The fixed-effects approach makes the strong assumption that all studies are estimating the same param-
eter �. However, in medical and social research, the studies typically differ in terms of target populations
(e.g., age, socioeconomic status, and severity of illness), the treatments under investigation (e.g., dosage
and length of follow-up), and the outcomes being measured. Random-effects meta-analysis [1] allows
for this diversity of scenarios by allowing the true effect size estimated by study i to differ from the mean
effect size � by a random amount �i (with mean 0 and variance �2):

yi D �C �i C �i : (2)
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It has been widely argued (for instance, by the National Research Council [2]) that the random-effects
approach is generally more realistic and preferable to the fixed-effects approach for a number of rea-
sons. First, the studies tend to be diverse [3,4], whereas the fixed-effects approach assumes that they are
‘functionally equivalent’ [5, p.83].

Second, the variance of the random effects describes the extent of heterogeneity and is arguably
equally important as the average effect size for understanding the consistency of effects across dif-
ferent scenarios [4, p.139]. If heterogeneity is substantial, sources of heterogeneity should ideally be
investigated [6, 7]. In this case, random-effects meta-regression [8–10] can be used to explain some of
the heterogeneity by using covariates while also allowing for residual heterogeneity not explained by
the covariates.

Third, in the random-effects approach, � represents the mean effect size for the popula-
tion of studies with varying scenarios [5, p.83], in contrast to the fixed-effects approach where
� represents the effect size shared by a set of studies assumed to conform with one spe-
cific scenario. The former interpretation clearly has more external validity. The random-effects
assumption is often believed to rely on the studies themselves being sampled from a pop-
ulation of studies. However, Higgins et al. [4] point out that it is sufficient to assume
exchangeability of the study-specific effect sizes (conditional on any covariates included in
the model).

Fourth, by accommodating heterogeneity due to varying scenarios, the random-effects approach
allows us to make predictions about effect sizes in future scenarios. Higgins et al. [4] describe
methods for deriving such prediction intervals and state that ‘predictive distributions are poten-
tially the most relevant and complete inferences to be drawn from a random-effects meta-analysis’
(p.141). Similarly, Borenstein et al. [5, p.131] suggest adding a 95% prediction interval, represent-
ing the 95% range of effect sizes in future studies, to the 95% confidence interval (CI) for � in the
forest plot.

Finally, the standard error of the estimate of � increases with the between-study variance, and
the fixed-effects approach may therefore understate uncertainty regarding �. Consequently, when the
between-study variance is underestimated, coverage of CIs for the overall effect is below the nominal
level [11, 12]. Draper [13, p.52] argues that allowing the study-specific effects to vary can be viewed as
‘continuous model expansion’ to allow for model uncertainty.

In this paper, we discuss the problem of estimating the between-study variance. Unfortunately, the
variance is estimated imprecisely when the number of studies is small, and estimates of 0 can frequently
occur, resulting in fixed-effects estimates of the other parameters and their standard errors. Engels
et al. [14] reanalyzed risk differences for 125 published meta-analyses of six or more randomized
clinical trials and found that boundary estimates occurred in 26% of the meta-analyses. Such bound-
ary estimates are accompanied by non-significant tests of homogeneity, typically leading to acceptance
of the null hypothesis of homogeneity. However, we argue, along with Higgins et al. [4, p.149], that
‘such a null hypothesis is typically untenable’ and agree with Borenstein et al. [5], Curcio and Verde,
[15], Draper [13], Hardy and Thompson [16], Overton [17], Viechtbauer [18], and others that the
choice of model should not be based solely on a test of homogeneity but on our understanding of
whether all studies share a common effect size. Importantly, tests of homogeneity tend to have lit-
tle power [16], and, as always, non-rejection of the null hypothesis cannot be seen as evidence for
the null hypothesis. Curcio and Verde [15] use the profile likelihood for � to show that a particular
meta-analysis dataset is consistent with quite a large amount of heterogeneity although the maxi-
mum occurs at the boundary and argue that choosing the most-supported value of 0 is not defensible
because this leads to the smallest CI for �. Overton [17] mentions that the random effect approach
may yield CIs that are too wide but argues that a conservative approach is appropriate when there is
little information.

When the number of studies is small, Borenstein et al. [5, p.84] and Higgins et al. [4, p.154] suggest
that a Bayesian approach with an informative prior distribution for the between-study variance may be
the best option. Higgins and Whitehead [19] use an ‘empirical prior’ for the heterogeneity parameter that
is estimated by performing a meta-analysis of historical meta-analyses. Higgins et al. [4, p.154] suggest
that it may even be preferable to use a plausible value for the between-study variance instead of the value
estimated from a small number of studies (see also Longford [20]).

In this paper, we suggest avoiding boundary estimates by specifying a Bayesian prior for the between-
study variance and no priors/uniform priors for the other model parameters [21]. We estimate the
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parameters by maximizing the marginal posterior of the model parameters (integrated over the ran-
dom effects), which is equivalent to penalized maximum likelihood estimation. The prior is chosen to
be weakly informative, keeping estimates away from the boundary and at the same time being faithful
to the data.

We also discuss CIs for � when the parameters are estimated by maximum likelihood. The stan-
dard method for estimating CIs in this case is based on the expected information matrix and ignores
uncertainty regarding the between-study variance �2. We suggest using the observed information matrix,
which can be viewed as constructing a CI by using a quadratic approximation to the profile log likelihood
of � and hence takes uncertainty regarding �2 into account.

The outline of the paper is as follows. In Section 2, we illustrate the problem of boundary estimates
by using two real datasets. Sections 3 and 4 review frequentist and Bayesian estimation methods for
random-effects meta-analysis. Section 5 introduces our Bayes modal (BM) approach for meta-analysis
without covariates, and Section 6 briefly discusses the different estimators for meta-regression with
covariates. In Section 7, the different estimators are applied to the examples introduced in Section 2, and
in Section 8, they are compared using simulations. We conclude with a brief discussion in Section 9.

2. Examples

2.1. Exercise for depression data

We demonstrate the boundary estimation problem by using data on 10 randomized clinical trials of
exercise as an intervention in the management of depression [22, 23]. The estimated effect sizes yi are
standardized mean differences in depression scores between the treatment and control groups, and these
have similar estimated standard errors between 0.24 and 0.57. We estimate a meta-regression model
with two covariates: ‘abstract’ x1i , a dummy variable for publication being a conference abstract (versus
journal article or other) and ‘duration’ x2i , the (mean-centered) length of follow-up in the number of
weeks. The model can be written as

yi D �C ˇ1x1i C ˇ2x2i C �i C �i ; i D 1; : : : ; 10

where �i �N.0; �2/ and �i �N
�
0; s2i

�
. The standard random-effects meta-analysis model corresponds

to this model with ˇ1 D ˇ2 D 0.
The model with and without covariates was estimated by maximum likelihood (ML) and restricted (or

residualized) maximum likelihood (REML [24]) by using the metaan [25] and metareg [26] com-
mands in Stata. In the meta-analysis model without covariates, the ML estimate of � is -1.056 with
standard error 0.234 (Table I). The REML estimate is also -1.056 with a slightly larger standard error of
0.248. The between-study standard deviation � is estimated as 0.621 and 0.671 by using ML and REML,

Table I. Parameter estimates for the meta-analysis and the meta-regression models applied to the
exercise for depression dataset.

Coefficient estimates

O� (se( O�)) Ǒ
1 (se( Ǒ1)) Ǒ

2 (se( Ǒ2)) O� Log likelihood

Meta-analysis model
DL -1.056 (0.239) 0.640 -11.326
UMM -1.056 (0.251) 0.683 -11.365
ML -1.056 (0.234) 0.621 -11.321
REML -1.056 (0.248) 0.671 -11.350
BM -1.056 (0.253) 0.689 -11.372

Meta-regression model
ML, REML -0.866 (0.137) -1.244 (0.341) 0.121 (0.053) 0 (0.162�) -2.243
BM -0.852 (0.153) -1.255 (0.371) 0.122 (0.060) 0.168 (0.124�) -2.766

*Standard error (se) of O� based on the observed information.
DL, DerSimonian and Laird; UMM, unweighted method of moment; ML, maximum likelihood; REML,
restricted maximum likelihood; BM, Bayes modal.
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Figure 1. Profile log-likelihood function of � for the meta-regression model applied to the exercise for depression
dataset.

respectively, suggesting that there is important variability between studies. However, when we include
the covariates, the residual between-study standard deviation � is estimated as 0. This point estimate
implies that the study-specific effects are perfectly predicted by the two covariates, which is unrealistic.
The estimates of the regression coefficients using ML or REML are the same as for fixed-effects meta-
regression, namely Ǒ1 and Ǒ2, which are -1.244 and 0.121, respectively, with estimated standard errors
of 0.341 and 0.053. Both coefficients are statistically significant at the 5% level. However, note that the
estimated standard errors are based on O� D 0 and are smaller than for any O� > 0, resulting in the most
anti-conservative inferences.

Figure 1 shows the profile log likelihood for � for the meta-regression model (maximized with respect
to �, ˇ1, and ˇ2). Clearly, the maximum of the profile log likelihood is attained at � D 0 but for
slightly larger values of � , e.g., � D 0:162 (Dstandard error of ML estimate O� , marked with the vertical
dashed line), the profile log likelihood does not decrease substantially. Comparing the change in pro-
file log likelihood with half of the 0.95 quantile of a chi-square distribution with one degree of freedom
(�20:95.1/=2D 1:921), we can infer that values for � up to about 0.35 are reasonably supported by the data
(See the horizontal dotted line.). When � is set to 0.35, the estimated standard error for Ǒ1 increases from
0.341 to 0.454, and the estimated standard error for Ǒ2 increases from 0.053 to 0.075. The coefficient
of duration is no longer statistically significant at the 5% level. The width of the estimated prediction
interval for the effect size of a new study [5, p.129] also increases with O� and is hence understated if �
is underestimated.

2.2. Antiplatelet therapy for prevention of stroke

As another example, we consider data from a collaborative meta-analysis of randomized trials of
antiplatelet therapy for the prevention of death, myocardial infarction, and stroke in high-risk patients
[27]. Specifically, we consider nonfatal strokes in the six trials that compared dipyridamole plus
aspirin with aspirin alone for patients with previous stroke, transient ischaemic attack, or myocar-
dial infarction. Analyzing the log odds ratios, we found that the ML and REML estimates of the
between-study variance are both 0. One large study with more than twice as many patients as
the next largest study and with a high incidence of nonfatal stroke has a particularly small stan-
dard error and contributes 66% to the ML estimate of the mean log odds ratio b� in the meta-
analysis model. The corresponding estimated odds ratio is 0.728, and its estimated 95% CI is
.0:593; 0:896/.

However, as in the previous example, the profile log likelihood for � is relatively flat, and val-
ues of � as large as 0:415 are supported (the profile log likelihood decreases by �20:95.1/=2). When
O� D 0:415, the contribution of the largest study to the estimated log odds ratio is only 33%, and
the estimated odds ratio is 0.791 (with 95% CI from 0.484 to 1.293). The point estimate of �
is sensitive to changes in O� because the studies differ considerably in their sizes and their rela-
tive weighting is greatly affected by the value of O� . The width of the estimated CI also increases
with O� .
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3. Classical estimation methods for random-effects meta-analysis

3.1. Estimation of �2

One of the most widely used methods for estimating �2 is the method of moment estimator by
DerSimonian and Laird (DL [1]), which equates

P
s�2i .yi � O�/

2 with its expectation where O� is
defined as

O�D

P
i yi=s

2
iP

i 1=s
2
i

: (3)

The resulting estimator is given by

O�2DL D

P
i s
�2
i .yi � O�/

2 � .n� 1/P
i s
�2
i �

P
i s
�4
i =

P
i s
�2
i

: (4)

For this method, distributional assumptions for �i and �i are not required. This estimator is also
called the weighted method of moment estimator because it equates the weighted sum of squares with
its expectation.

The unweighted method of moment (UMM) estimator equates the unweighted sum
P
i .yi � Ny/

2 with
its expected value and solves for �2, resulting in

O�2UMM D
1

k � 1

kX
iD1

.yi � Ny/
2 �

1

k

X
i

s2i :

This estimator is also known as Hedges estimator [28] and coincides with the minimum norm quadratic
unbiased estimator (MINQUE [29, 30]).

Under the assumptions that �i and �i are normally distributed, we can estimate �2 by ML. The
log-likelihood function is given by

l.�; �2/D�
1

2

kX
iD1

�
log

�
2�
�
s2i C �

2
��
C
.yi ��/

2

s2i C �
2

�
(5)

and the ML estimator is

b�2ML D

 P
i bw2i �.yi �b�ML/

2 � s2i
�P

i bw2i
!C

;

where .�/C Dmax.�; 0/ and

b�ML D

P
i bwiyiP
i bwi ; bwi D �s2i Cb�2ML

��1
: (6)

Because these equations do not have a closed form solution, O�2ML and O�ML have to be found iteratively.
It is well known that the ML estimator for variance components is downward biased in finite samples.

Therefore, REML, which takes the degrees of freedom into account, is often used, particularly for small
sample sizes. When si D s for all i , unlike the ML estimator, the REML estimator of �2 is unbiased if
it is allowed to be negative. For the random-effects meta-analysis model, the residualized log-likelihood
function becomes

lR.�; �
2/D l.�; �2/�

1

2
log

X
i

�
�2C s2i

��1
: (7)

The REML estimator of �2 is given by

b�2REML D

 P
i bw2i �.yi �b�REML/

2 � s2i
�P

i bw2i C
1P
i bwi

!C
where O�REML is the same as (6) except that O�2ML is replaced with O�2REML. Morris [31] suggests an
approximate REML estimator in the empirical Bayes framework, which requires an iterative method.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 4071–4089
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3.2. Estimation of �

With known variance �2, the generalized least squares estimator of � for model (2) is

O�D

P
i yi

�
�2C s2i

��1P
i

�
�2C s2i

��1 : (8)

This estimator is unbiased, and its variance,

var. O�/D
1P

i

�
�2C s2i

��1 ; (9)

attains the minimum among all linear unbiased estimators by the Gauss–Markov theorem.
The fixed-effects model in (1) assumes that �2 D 0 and the estimator of � reduces to the weighted

average in (3). In contrast, if we assume that the variance of the random effect is infinite, then O� becomes
the simple average Ny D

P
i yi=k. In practice, an estimate, such as O�2DL or O�2UMM, is substituted for �2 in

(8), or, for ML and REML, � is estimated iteratively with �2.
Asymptotically, the ML estimator O�ML follows a normal distribution with mean � and variance given

in (9). In addition, using any of the consistent estimators for �2 discussed in the previous section results
in estimators for � that are asymptotically equivalent to O�ML and therefore asymptotically efficient.

3.3. Methods of constructing confidence interval of �

Asymptotically, the ML estimator . O�ML; O�
2
ML/ follows a normal distribution with mean .�; �2/ and

covariance matrix given by the inverse of the information matrix. The information matrix I is the
expectation of the negative Hessian matrix H of the log-likelihood function, given by

I DEŒ�H�D
" P

i

�
s2i C �

2
��1

0

0 1
2

P
i

�
s2i C �

2
��2

#
:

Because the information matrix is diagonal, its inverse is the matrix with reciprocals of each diagonal
element. On the basis of the asymptotic normal distribution of O�ML and O� with the other estimators of
�2 (which are asymptotically equivalent to O�ML), we can construct a .1 � ˛/100% Wald-type CI with
lower and upper bounds given by

O�˙ ´1�˛=2

 X
i

�
s2i C �

2
��1!� 12

; (10)

where ´1�˛=2 is the .1 � ˛=2/th quantile of the standard normal distribution. Because the true �2 is
unknown, we replace it with an estimate. Most standard statistical software (e.g., the metafor package
in R [32] and metaan in Stata) estimates CIs for � in this way.

Because the information matrix is diagonal, we can see that the variance of O� does not take into
account the uncertainty regarding �2. Hardy and Thompson [33] therefore suggest constructing CIs by
using the profile log likelihood for � (after profiling out �2), which can be written as

lp.�/D�
1

2

X
i

�
log

�
2�
�
s2i C �

2.�/
��
C

.yi ��/
2

s2i C �
2.�/

�
;

where �2.�/ maximizes the log likelihood in (5) for given �. The lower and upper bounds of the CI for
� are found by the roots of

lp.�/D lmax � 0:5�
2
1�˛.1/; (11)

where �21�˛.1/ is .1 � ˛/th quantile of the �2 distribution with one degree of freedom and lmax is the
maximum of the likelihood function. Because the profile log-likelihood function is not always symmetric
in �, the profile likelihood CI is not necessarily centered at O� unlike the Wald-type CI in (10).
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An alternative to the profile likelihood approach that also takes into account parameter uncertainty
for �2 is to construct a Wald-type interval based in the observed information [34, 35], defined as minus
the Hessian,

I.�; �2/D�H D

264
P
i

1

s2
i
C�2

P
i

yi��

.s2i C�
2/
2P

i
yi��

.s2i C�
2/
2

1
2

P
i
2.yi��/

2

.s2i C�
2/
3 �

1

.s2i C�
2/
2

375 ;
evaluated at the estimates . O�; O�2/. This approach is equivalent to approximating the profile log-likelihood
function by a quadratic function at the mode and then finding the roots of (11) for this quadratic
approximation [36, p.267].

Different from I, I. O�; O�2/ is not always diagonal, and, generally, .I�1/1;1 ¤ .I1;1/�1. The variance
of O�, on the basis of the observed information, is

.I�1/1;1 D

24 X
i

1

s2i C O�
2

!
�

 X
i

yi � O��
s2i C O�

2
�2
!2
=

 X
i

.yi � O�/
2�

s2i C O�
2
�3 � 12X

i

1�
s2i C O�

2
�2
!35�1 :

(12)
Comparing the (1,1)-element of I�1 with (12), we find that the variance estimate based on the observed
information is always greater than or equal to the variance estimate based on the expected information.

Equality holds when O� D
�P

i yi=
�
s2i C O�

2
�2	

=
�P

i

�
s2i C O�

2
��2	

, which includes the special case

si D s for all i .

4. Bayesian estimation method using Markov chain Monte Carlo

Because of advances in computational methods, fully Bayesian estimation via Markov chain Monte
Carlo (MCMC) has become popular. The Bayesian random-effects meta-analysis model can be written
as

yi j�i �N
�
�i ; s

2
i

�
; �i j�; � �N.�; �

2/; �� p.�/; � � p.�/:

A diffuse normal prior distribution is often used for �, for example, N.0; 106/. Unlike the prior for �,
the choice of prior distribution for � can have a large impact on statistical inference especially when the
number of studies is small [37]. Therefore, a range of different seemingly vague priors has been used for
the between-study variance.

An inverse-gamma prior on �2 with small values of the hyperparameters is a popular choice [38–41]
that is mathematically convenient because of its conjugacy. As an alternative, a uniform prior on � , for
example with range .0; 100/, is also often used [4, 42].

Lambert et al. [37] compare 13 vague priors for � (or �2), focusing on their performance when the
number of studies is small. Their extensive simulation comparison of point estimates (posterior median
of � and �) and coverage probabilities shows that the inverse-gamma.10�3; 10�3/ on �2 and the uniform
.0; 100/ on � behave better than the other priors in terms of bias, coverage, and convergence problem.

5. Bayes modal estimator with a weakly informative prior

In this paper, we suggest specifying a prior p.�/ for � and maximizing the resulting posterior distri-
bution to avoid boundary estimates. Such posterior modal estimation has been used to avoid boundary
estimates in log-linear models [43] and latent class analysis [44, 45] and to obtain more stable estimates
of item parameters in item response theory [46–48].

We suggest specifying a gamma prior on the between-group standard deviation (see Chung et al. [21]
for a similar approach in linear random-intercept models for clustered data). With the gamma.˛; 	/ prior
on � , p.�/D 1

�.˛/
�˛�1e��� , and implicitly assuming an improper uniform prior for �, we can write the

log-posterior of .�; �/ as

p.�; � jy/D l.�; �2/C .˛ � 1/ log � � 	� C c1; (13)

where l.�; �2/ is the log likelihood in (5). The parameter estimate for .�; �/ that maximizes p.�; � jy/
can be found numerically. Unlike posterior mean (or median) estimation, the posterior mode can be

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 4071–4089
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found by numerical optimization as for ML estimation and does not require simulation. Because we
consider a prior for � only, the BM estimator for � will have the same form as the ML estimator in (6)
but with different weights because of the different estimates of � . Because the gamma density with ˛ > 1
is 0 at the origin, the posterior density for � cannot have a mode at the boundary even if the likelihood
function is maximized at the boundary. In addition, with ˛ D 2, the gamma density increases linearly
around 0, which keeps us from assigning excessive penalty near the boundary.

The effect of the gamma penalty can be examined using a quadratic approximation of the profile log-
likelihood function as a function of � (not �2) after profiling out �. The profile log-likelihood function
of � is

lp.�/D�
1

2

X
i

�
log

�
2�
�
s2i C �

2
��
C
.yi ��.�//

2

s2i C �
2

;

�

where �.�/D
P
i yi

�
�2C s2i

��1
=
P
i

�
�2C s2i

��1
. The first derivative of lp.�/ is

@lp.�/

@�
D .2�/ �

@lp.�/

@.�2/

D .2�/ �
X
i

�
1

2

241C 2.yi ��.�// @�

@.�2/

s2i C �
2

�
.yi ��.�//

2�
s2i C �

2
�2

35 : (14)

The summation in (14) represents @lp=@.�2/, which is possibly negative when the maximum of lp (as a
function of �2 with restriction �2 > 0) is attained at �2 D � D 0. Even in this case, @lp=@� is 0 at the
boundary � D 0. Therefore, the leading term of the Taylor expansion of lp.�/ at the ML estimate of � is
quadratic.

Consequently, we consider the quadratic approximation of the profile log likelihood around the ML
estimator, O�ML, as follows:

lp.�/��
.� � O�ML/

2

2 � se. O�ML/2
C c2:

With the gamma.˛; 	/ prior on � , the profile log-posterior density (where � is profiled out) can be
approximated by

logpp.� jy/��
.� � O�ML/

2

2 � se. O�ML/2
C .˛ � 1/ log � � 	� C c3: (15)

For a fixed value of ˛, the mode of the right hand side of (15) increases as 	 decreases, and so
the largest posterior mode is obtained when 	 ! 0. When O�ML D 0, the largest BM estimator is
O�BM D se. O�ML/

p
˛ � 1 with 	 ! 0 [21]. Therefore, if we use gamma.2; 	/ with 	 ! 0, the BM

estimator is only about one standard error away from the ML estimator when the ML estimator is on the
boundary. This also implies that the log likelihood does not decrease considerably from the maximum
when we use the BM estimator.

Therefore, as a default choice of .˛; 	/, we select ˛ D 2 and 	 � 0, but if one has stronger prior
information about � , ˛ > 2 can be used. Although this choice assigns more penalty on the boundary, this
is acceptable if it is consistent with the prior information. By observing that the gamma.˛; 	/ prior has
its mode at .˛� 1/=	, we can then set 	 to .˛� 1/=�� where �� is a plausible value of � on the basis of
prior knowledge.

In terms of suggesting a default prior, our approach can be regarded as an objective Bayesian method
[49]. At the same time, from the frequentist point of view, BM estimation can be viewed as penalized ML
estimation with an additive penalty term .˛�1/ log �C	� . From this view, our method can be compared
with REML, which maximizes lR in (7). Comparing the REML penalty term �0:5 log

P
i

�
�2C s2i

��1
in (7) with the log-gamma.2; 	/ with 	 � 0, we can see that the terms differ by a constant if s2i is
negligible compared with �2.

Figure 2 compares the REML penalty term for three different sample sizes (k D 5; 10; 30) with the
log-gamma penalty term. The within-study error variance s2i is set to 0:1 for all i , and the intra-class
correlation 
D �2=.�2Cs2/ is shown. As � increases, all the penalty functions become parallel. We can
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Figure 2. Log-penalty (log-prior) functions for restricted maximum likelihood (REML) and Bayes modal (BM)
using gamma.2; 0/ with si D 0:1 for all i . Intra-class correlation 
 D �2=.�2 C s2/ is reported on the second

x-axis.

infer that the REML and the BM estimators are close when � is large compared with s2i , with an intra-
class correlation of about 0.6 or more. For smaller values of � , the gamma prior assigns more penalty
than REML and does not permit boundary estimates of � .

6. Meta-regression model

When study-level covariates are available, as in the exercise for depression data, a meta-regression
model may be appropriate. As an extension of the random-effects meta-analysis model in (2), the
meta-regression model with m covariates can be written as

yi D ˇ
Txi C �i C �i ; i D 1; : : : ; k; (16)

where xi D .1; xi1; : : : ; xim/
T is a vector of covariates for study i , ˇ 2 RmC1 is a vector of fixed

coefficients, �i �N.0; �2/, and �i �N
�
0; s2i

�
.

The log-likelihood function for model (16) is

l.ˇ; �2/D
1

2

X
i

"
log

�
�2C s2i

�
C
.yi � ˇ

Txi /
2

�2C s2i

#
: (17)

As in the meta-analysis model with no covariates, the ML estimator does not have a closed form but
must be found iteratively. On the basis of the information matrix, the asymptotic variance of the ML
estimator for ˇ is

var. ǑML/D

 X
i

1

�2C s2i
xix

T
i

!�1
and this variance is estimated by replacing �2 with its estimate. Therefore, when �2 is underestimated,
the uncertainty of the fixed coefficients will be underestimated, leading to inflated probabilities of type-I
errors.

For BM estimation with a gamma prior on � , the log-posterior function has the same form as in (13)
but with the log likelihood replaced by (17). For comparison, the restricted log-likelihood function for
the meta-regression model is given by

lR.ˇ; �
2/D l.ˇ; �2/�

1

2
log

ˇ̌̌̌
ˇX
i

1

�2C s2i
xix

T
i

ˇ̌̌̌
ˇ : (18)
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When s2i D s
2 for all i and xij is 1 only for i D j and 0 otherwise, the REML-penalty term (the second

term in the right-hand side of (18)) reduces to

mC 1

2
log.�2C s2/C c;

where c is a constant. Compared with the log-gamma penalty, .˛ � 1/ log � C 	� , we observe that the
choices of ˛ D mC 2 and 	 � 0 make the gamma penalty similar to the REML penalty when s2 is
small. The gamma prior tends to assign more penalty around � D 0 than the REML penalty, as shown
in Figure 2 for the meta-analysis model. As s2 decreases, the REML penalty approaches the gamma
penalty up to an additive constant.

The meta-regression model is equivalent to the Fay–Herriot model (1979) for small area estimations,
and for the latter, adjustment for density maximization [51, 52, 53] has been proposed to obtain a strictly
positive group-level variance estimate. Morris and Tang use a penalty term �.�2/ D .�2/c�1, which is
equivalent to our BM estimator with a gamma.˛; 	/ prior on � , with ˛ D 2cC 1 and 	! 0. Therefore,
our BM estimator also shares the properties of adjustment for density maximization, such as predictions
of �i being minimax for mean squared-error loss when the within-group variances are equal and c is
equal to one or some smaller values [53].

7. Examples revisited

For the data described in Section 2, estimates of �; ˇ1; ˇ2, and � by using BM estimation with a
gamma.2; 10�4/ prior on � were obtained using the Stata program gllamm [54, 55]. For the depres-
sion data, BM estimates are given in Table I together with DL, UMM, ML, and REML estimates. DL,
ML, and REML estimates were obtained using metaan and metareg, and we wrote our own program
to obtain UMM estimates. For the meta-analysis model, all the methods give the same estimate for �,
but for � , the BM estimate is the largest, and the ML estimate is the smallest. The log likelihoods are all
very similar.

For the meta-regression model applied to the depression data, the BM estimate of � is 0.168, whereas
the ML and REML estimates are both 0. As expected, the BM estimate of � is about one standard error
(0.162) away from the ML estimate of 0, and the log likelihood decreases only 0.523 from the maximum
value of -2.243, which shows that the BM estimate O�BM D 0:168 is reasonably supported by the data. As
expected, the estimated standard errors of O�, Ǒ1, and Ǒ2 are larger for BM than for ML and REML.

For the antiplatelet therapy data, the BM estimate of � is 0.188, which is a bit more than one stan-
dard error (0.141) away from the ML estimate of 0. The associated decrease in the log likelihood is
only 0.631. Whereas the estimated fixed coefficients for the depression data (which are more balanced)
are close for ML, REML, and BM methods, the estimated odds ratio for antiplatelet therapy data dif-
fers substantially between ML and REML (0.728), and BM (0.766). This shows that, if the sizes of the
studies (or the standard errors of effect sizes) differ greatly, BM can have large influence on the point
estimate and standard error estimate for � because the relative weighting of the studies is affected by
O� . The estimated 95% CI for the odds ratio by BM is (0.556,1.057), which is wider than the CI by ML
(0.593,0.896).

We now compare and visualize the different types of CIs for � discussed in Section 3.3 by using the
depression data. Consider the likelihood surface for the meta-analysis model without covariates shown
as a contour plot in Figure 3. The ‘X’ marks the ML estimates . O�ML; O�ML/ D .�1:056; 0:689/. The
dashed curve shows the values of � that maximize the log likelihood for given values of �. The log like-
lihood along this path, as a function of �, is the profile log-likelihood function lp.�/. The dash-dotted
line indicates where the conditional log likelihood given the ML estimate of � is located. The contours
show decreases from the maximum (-11.32) in multiples of �20:95.1/=2D 1:92.

Figure 4 illustrates four different methods for constructing CIs for �. The top panel shows the condi-
tional log likelihood given � D O�ML, which is a two-dimensional view of Figure 3 along the dash-dotted
line. Note that, for any given � , O�ML is a linear combination of the yi s, which are assumed to fol-
low normal distributions, and so O�ML is also exactly normally distributed. Therefore, the conditional
log-likelihood function of � given � is always quadratic in �, as observed in (5) and in the top panel of
Figure 4. The vertical solid line is at O�ML D�1:056, and the two dashed lines indicate the lower (-1.515)
and upper (-0.597) bounds of the 95% Wald-type CI of � on the basis of the expected information in
(10) at . O�ML; O�ML/. The horizontal solid line is 1.92 (D �20:95.1/=2) lower than the maximum so that it
crosses at the bounds of the CI.
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Figure 3. Contour plot of the log-likelihood function for the meta-analysis without covariates applied to the
exercise for depression dataset.
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Figure 4. Comparison of the Wald-type confidence interval (CI) based on the expected information with max-
imum likelihood (ML) estimates (top), the profile likelihood CI and Wald-type CI based on the observed
information with ML estimates (middle), and the Wald-type CI based on Bayes modal estimation (bottom) for

the meta-analysis applied to the exercise for depression dataset.

The plot in the middle panel of Figure 4 shows the profile log-likelihood lp.�/. Again, the solid
horizontal line is 1.92 lower than the maximum of the profile log-likelihood function. Therefore, the
limits of the 95% profile likelihood CI .�1:563;�0:545/ are where the profile log-likelihood curve and
the horizontal line cross. Because the profile log likelihood is not always symmetric, the CI might not
be centered at O�ML. The dash-dotted curve is a quadratic approximation of the profile-likelihood (PL)
function at the mode. The curvature at the mode can be calculated from the observed information at
. O�ML; O�ML/. The limits of the 95% Wald-type CI .�1:515;�0:597/ based on the observed information
are shown as vertical dash-dotted lines, which coincide with the points where the quadratic curve and the
horizontal line cross each other. In this dataset, the Wald-type CIs based on the expected and observed
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information are almost the same, but generally, the latter will be wider because it takes into account the
uncertainty of O� .

The bottom panel shows the log-posterior at � D O�BM with a gamma.2; 10�4/ prior on � . The limits
of the 95% Wald-type CI .�1:551;�0:561/ based on the ‘observed information’ (the Hessian of the
log-posterior function) are shown as dashed vertical lines. This CI is close to the profile likelihood CI
but is the widest among all the intervals considered here.

8. Simulation study

8.1. Simulation design

To compare the BM estimators with the alternatives discussed in Section 3, we conduct simulations for
the meta-analysis model with no covariates and the meta-regression model with two covariates. The data
for the meta-analysis model with no covariates are simulated for different numbers of studies (k D 5, 10,
30) and for different values of the between-study variance (�2 D 0, 0.01, 0.05, 0.1, 0.2). Although the
BM estimator is based on the assumption that �2 > 0, we include �2 D 0 here as a worst-case scenario
for the BM estimator. For each combination of k and �2, we generate 1000 datasets with true overall
effect � D 0:5 and heterogeneous within-study variances s2i . We follow Brockwell and Gordon [11]
by drawing within-study variances from a 0:25�2.1/ distribution truncated below at 0.009 and above
at 0.6. The mean and standard deviation of this distribution of s2i are 0.20 and 0.21, and the intra-class
correlations computed by plugging in the mean of s2i are 
 D 0, 0.05, 0.20, 0.33, and 0.5, respectively,
for �2 D 0, 0.01, 0.05, 0.1, and 0.2.

Higgins and Thompson [56] suggested a heterogeneity measure in meta-analysis, I 2 D �2=.�2C s2/,
where s2 is the ‘typical’ within-study variance,

s2 D

P
i wi .k � 1/�P

i wi
�2
�
P
i w

2
i

;

and wi D 1=s2i . In other words, I 2 describes the proportion of total variation across studies that is
attributable to heterogeneity rather than within-study variability. The averages of s2 over 1000 replicates
are 0.09, 0.05, and 0.04 for k D 5; 10, and 30, respectively. Table II presents the average of I 2 over 1000
replicates for each combination of k and �2. As k increases, the average of the ‘typical’ within-study
variance decreases, and I 2 increases with increasing k and �2.

The between-study variance �2 of the meta-analysis model is estimated using UMM, DL, ML, REML,
and BM with a gamma.2; 10�4/ prior on � as discussed. The overall effect � is estimated by plugging in
O�2 from each estimation method for �2. The fixed-effects (FE) model is fitted by letting �2 D 0. CIs for
� are estimated using Wald-type CIs on the basis of the expected information with FE, UMM, DL, ML
and REML estimates, and Wald-type CIs based on the observed information with BM estimates. For the
ML estimates, we also compare PL CIs and Wald-type CIs on the basis of the observed information.

For each simulated dataset, the parameters are also estimated by MCMC using WinBUGS 1.4.3
[57, 58] with a diffuse prior N.0; 106/ on � and two different vague priors for the between-study vari-
ation: uniform(0,100) on � and inverse-gamma.10�3; 10�3/ on �2. After a 1000-iteration burn-in, �
and its 95% credible interval are estimated by the median and percentiles of 5000 posterior samples,
respectively.

For the meta-regression model, we simulate data with different values of the between-study variance
(�2 D 0, 0.01, 0.05, and 0.1) for k D 10 and m D 2, and with the intercept and regression coefficients

Table II. Heterogeneity measure, I2, for each simulation
condition.

k=5 k=10 k=30

�2=0 0 0 0
�2=0.01 0.16 0.19 0.22
�2=0.05 0.45 0.52 0.58
�2=0.1 0.60 0.68 0.73
�2=0.2 0.73 0.80 0.84
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set to 1. Covariates are generated from a bivariate normal distribution with 0 means, unit variances, and
a correlation of 0.3.

As in the meta-analysis model, we simulate 1000 replicates with heterogeneous within-study vari-
ances s2i . We use the same values of covariates over replications. The between-study variance �2 of the
meta-regression model is estimated using ML, REML, and BM estimators.

The simulations are implemented using Stata, specifically, our own code is used for UMM, metaan
is used for FE, DL, ML, REML, and PL, gllamm is used for BM, and metareg is used for ML and
REML estimations of the model with covariates.

8.2. Results

8.2.1. Boundary estimates. First, we report the proportions of the estimates of � that are on the bound-
ary (less than 10�5) when the true � is not 0. BM yields no boundary estimates in any of the simulation
conditions. As shown in Figure 5 (for � up to

p
0:1/, the proportions of boundary estimates for the other

methods are large when k and � are small (over 50% when � D
p
0:01 and k D 5) and decrease as k

and � increase. DL and REML perform similarly across all conditions and better than ML when k D 5
and k D 10. For k D 30, ML is close to DL and REML, and the proportion of boundary estimates is
negligible when � >

p
0:05. For k D 10 and k D 30, UMM performs worst producing a substantial

proportion of boundary estimates even for k D 30 when � is large.

8.2.2. Log likelihood. To examine the decrease of the log likelihood from its maximum at O�BM, the
likelihood-ratio test (LRT) statistics is calculated as

�2
�
l. O�BM; O�

2
BM/� l. O�ML; O�

2
ML/

�
for each replicate. For given values of k D 5; 10, and 30, the 0.99 quantile of the LRT statistic is largest
when � D 0 with values 2.499, 1.766, and 1.159, respectively.

For testing H0 W �2 D 0, the asymptotic null distribution of the LRT statistic is 0:5�2.0/C 0:5�2.1/
whose 0.99 quantile is 5.41. Crainiceanu and Ruppert [59] argue that this �2 mixture approximation can
be very poor for finite samples and provide the exact LRT quantiles. Although our null value O�BM is not 0
(but could be close to 0), we can compare our LRT statistics with Crainiceanu and Ruppert’s [59] results
for drawing a conservative conclusion, which shows that the 0.99 quantile of the exact distribution of
the LRT statistics is 3.48 when k D 5 and study sizes are assumed to be infinite. This implies that BM
estimates do not decrease the likelihood substantially from the maximum for most of the simulation
conditions, and so the effect of the prior on the parameter estimates is sufficiently weak.
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Figure 5. Proportions of the boundary estimates of � for meta-analysis. DL, DerSimonian and Laird; UMM,
unweighted method of moment; ML, maximum likelihood; REML, restricted maximum likelihood; BM,

Bayes modal.
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Figure 6. Estimated bias (top row) and root mean squared error (RMSE) (bottom row) of O� for meta-analysis. DL,
DerSimonian and Laird; UMM, unweighted method of moment; ML, maximum likelihood; REML, restricted

maximum likelihood; BM, Bayes modal.

8.2.3. Estimation of � . The top panels of Figure 6 summarize the estimated bias of the UMM, DL, ML,
REML, and BM estimators for � , with � ranging only up to

p
0:1 for clarity. For all methods, the bias

decreases as k increases for a given value of � and is close to 0 for k D 30 when � >
p
0:01.

When � D 0, all estimation methods overestimate � , but as � increases, the bias decreases and rapidly
becomes negative for DL, ML, and REML, with ML performing the worst. This problem of negative
bias was also found by Sidik and Jonkman [60] and led them to conclude that the DL, ML, and REML
estimators ‘may only be recommended if the analyst is fairly certain that the heterogeneity in effect mea-
sures among studies is relatively small’. The BM estimator produces upward biased estimates across all
conditions and performs better than ML and about as well as DL and REML when � >

p
0:05 (but with

bias in the opposite direction).
The bottom panels of Figure 6 display the root mean squared error (RMSE) of O� . Consistent with the

simulation results of Sidik and Jonkman [60], UMM yields larger RMSE than DL, ML, and REML, and
we find that the RMSE for UMM is also larger than for BM even when � D 0. When � D 0, BM has
larger RMSE than DL, ML, and REML but performs better than these estimators when � is sufficiently
large (� >

p
0:05 for k D 5 and � >

p
0:01 for k D 10). For k D 30, BM performs similarly to DL,

ML, and REML.
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8.2.4. Coverage probability of confidence intervals for �. The estimated coverage probabilities of 95%
CIs for � estimated using UMM, DL, ML, REML, PL, and BM are presented in the top panels of
Figure 7 (again, for � up to

p
0:1). When � D 0, the coverage probabilities for all methods are above

0.95 because � is overestimated by all methods in this case [11]. The coverage probabilities decrease
with increasing � for all k, particularly for small k. Consistent with other simulation studies [11, 61],
DL, ML, and REML produce increasingly severe under-coverage as � increases. As also found by
Brockwell and Gordon [11], PL produces larger coverage and hence performs better than DL, ML,
and REML unless � is close to 0. The BM estimator produces even larger coverage and outperforms all
methods when � >

p
0:05. For � >

p
0:01, the estimated coverage for BM is at least as close to 0.95 as

for DL, ML, and REML and is substantially closer to 0.95 for larger values of � .
In the bottom panels of Figure 7, we also compare the estimated coverage probabilities of two Wald-

type CIs for ML: one based on the expected information (ML: exp), which is also shown in the top
panels, and the other based on the observed information (ML: obs) with the profile likelihood CI. As
expected, the estimated coverage probabilities for ML based on the observed information are slightly
higher than the ones based on the expected information. However, both Wald-type CIs perform worse
than PL.

Figure 7. Estimated coverage probabilities for the UMM, DL, ML, REML, PL, and BM estimators (top row),
and ML and PL estimators (bottom row) of 95% confidence intervals for � for meta-analysis. The nominal level,
0.95, is shown as a horizontal solid line. DL, DerSimonian and Laird; UMM, unweighted method of moment;

ML, maximum likelihood; REML, restricted maximum likelihood; BM, Bayes modal; PL, profile likelihood.
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� by posterior median estimation using MCMC. (k D 5). BM, Bayes modal; PL, profile likelihood.
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covariates. ML, maximum likelihood; REML, restricted maximum likelihood; BM, Bayes modal.

For constructing Wald CIs for �, Berkey et al. [10] suggest using t1�˛=2.k � 4/ for the multiplier of
the standard error instead of the normal quantile. In the context of testing, Hartung and Knapp [62] use
the t distribution with k� 1 degrees of freedom. We also provide coverage probabilities with t quantiles
with k � 1 and k � 4 degrees of freedom in the supplementary material.‡ When k D 5 and 10, the
Wald CI with traditional estimators for �2 tends to have better coverage than those shown in Figure 7
when t1�˛=2.k�1/ is used for the multiplier. The CI with t1�˛=2.k�4/ tends to produce over-coverage,
especially for k D 5, where coverage is 100% for all values of � and � considered in the simulation.

8.2.5. Results for MCMC. The estimated bias and RMSE of � for k D 5 are displayed in the left and
middle panels of Figure 8, respectively (for � up to

p
0:2). The uniform prior produces the largest bias

and RMSE regardless of the value of � . The estimates of � using the inverse-gamma prior tend to be
smaller than the BM estimates, with smaller bias for small � but larger (downward bias) for larger � .
The RMSE of the inverse gamma is the smallest for � <

p
0:05 but larger than or similar to the RMSE

of BM for � >
p
0:1. The right panel of Figure 8 compares the coverage of 95% credible intervals for

� estimated by MCMC with the coverage of 95% CIs estimated by BM and PL for k D 5. Both the
uniform and the inverse-gamma priors produce higher coverage than BM and PL. For the uniform prior,

‡Supporting information may be found in the online version of this article.
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coverage is substantially larger than 0.95 even for � D
p
0:2 where all the other methods have lower

than nominal coverages. For k D 10 and 30 (supplementary materials), the coverage, bias, and RMSE
follow a similar pattern, but the difference between estimators fades as k increases.

8.2.6. Meta-regression. Figure 9 shows the estimated bias and RMSE of � for the meta-regression
model with two covariates for k D 10, estimated using ML, REML, and BM. The results are similar as
for the meta-analysis model without covariates (Figure 6, middle panels), except that BM has negative
bias for large � . As before, BM performs best in terms of RMSE when � >

p
0:01.

9. Discussion

When unexplained between-study heterogeneity is believed to exist, as is the case in most meta-analyses,
random-effects meta-analysis or meta-regression is more appropriate than the fixed-effects counterparts.
However, estimates of the between-study (residual) variance are imprecise when the number of studies
is small and are often on the boundary of 0, yielding the unrealistic fixed-effects results. As seen with
the antiplatelet therapy data example, the between-study variance estimate can have a greater impact on
inferences when the studies vary more in their standard errors.

We proposed using a BM estimator with a gamma prior for the between-study standard deviation.
Because this estimator never produces boundary estimates, the meta-analysis model can include unex-
plained heterogeneity even when the data do not provide enough information for the between-study
variation. At the same time, our method still respects the data in the sense that it leads to small decreases
in the log likelihood. Therefore, our approach is preferable to traditional estimators, such as ML or
restricted ML estimators, when boundary estimates occur.

Compared with full Bayes estimation, our approach does not require simulation with convergence
checking and is simple to use with the gllamm command in Stata. In addition, it is computationally
as efficient as ML estimation and, in fact, potentially more efficient as it avoids the slow convergence
that can occur if the ML estimate is on the boundary. The posterior median estimator with the inverse-
gamma.10�3; 10�3/ prior for the between-study variance performs quite well, but not as well as the BM
estimator when moderate between-study variation exists.

When the traditional estimators do not produce boundary estimates, our approach tends to be a little
more conservative by yielding larger variance estimates and wider estimated CIs for the mean effect size.
As the number of studies increases, our estimator approaches the traditional estimators.
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